Toxic Thalium: Humans changing the chemistry of the Baltic Sea

changing chemistry of the Baltic Sea


May 6, 2024

Above: Assistant Professor of Geology & Geophysics Chad Ostrander stands in front of the Elisabeth Mann Borgese research vessel.

Human activities account for a substantial amount — anywhere from 20% to more than 60% — of toxic thallium that has entered the Baltic Sea over the past 80 years, according to new research by scientists affiliated with the Woods Hole Oceanographic Institution (WHOI) and other institutions.

Chad Ostrander, lead author of the study, preparing a short sediment core collected from the East Gotland Basin during the investigation. - Credit: Colleen Hansel, ©Woods Hole Oceanographic Institution

Currently, the amount of thallium (element symbol TI), which is considered the most toxic metal for mammals, remains low in Baltic seawater. However, the research, using stable isotope analysis, suggests that the amount of thallium could increase due to further anthropogenic, or human induced, activities, or due to natural or human re-oxygenation of the Baltic that could make the sea less sulfide rich. Much of the thallium in the Baltic Sea, the largest human-induced hypoxic area on Earth, accumulates in the sediment thanks to abundant sulfide minerals.

“Anthropogenic activities release considerable amounts of toxic thallium annually. This study evidences an increase in the amount of thallium delivered by anthropogenic sources to the Baltic Sea since approximately 1947,” according to the journal article, “Anthropogenic forcing of the Baltic Sea thallium cycle,” published in Environmental Science & Technology.

“Humans are releasing a lot of thallium into the Baltic Sea, and people should be made aware of that. If this continues — or if we further change the chemistry of the Baltic Sea in the future or if it naturally changes — then more thallium could accumulate. That would be of concern because of its toxicity,” said Chadlin Ostrander lead author of the article which he conducted as a postdoctoral investigator in WHOI’s Department of Marine Chemistry and Geochemistry. Currently, he is an assistant professor in the Department of Geology & Geophysics at the University of Utah.

For the study, the researchers set out to better understand how thallium and its two stable isotopes 203Tl and 205Tl are cycled in the Baltic Sea. To discern modern thallium cycling, concentration and isotope ratio data were collected from seawater and shallow sediment core samples. To reconstruct thallium cycling further back in time, the researchers supplemented their short core samples with a longer sediment core that had been collected earlier near one of the deepest parts of the sea. They found Baltic seawater to be considerably more enriched in Tl than predicted. This enrichment started around 1940 to 1947 according to the longer sediment core.

Read the full press release from Woods Hole Oceanographic Institution here.

>> HOME <<


U Atmospheric Scientists Team Up for $4.8M Snowfall Research Project

U atmospheric scientists team up for $4.8M snowfall research project


May 6, 2024
Above: Atmospheric Sciences Professor and Storm Peak Laboratory Director Gannet Hallar and students on the roof of Storm Peak Lab. Photo credit: Melissa Dobbins.

The S2noCliME Field Campaign aims to better predict snowfall processes that are critical to water supply in the Intermountain West

 

 

Gannet Hallar stands with a cloud imaging probe, which will measure the size and shape of ice particles in clouds during the field campaign. Photo credit: Melissa Dobbins.

In a new $4.8 million research project funded by the National Science Foundation, faculty from the University of Utah are partnering with lead investigators from the University of Michigan and other universities to better understand how snowfall processes are impacted by complex mountainous terrain. The multi-institutional team will conduct the Snow Sensitivity to Clouds in a Mountain Environment (S2noCliME) Field Campaign during the 2024-2025 winter season in northwest Colorado's Park Range, centered on the U's unique research station, Storm Peak Laboratory.

The Intermountain West is experiencing warmer, drier conditions and declines in snowpack due to climate change, putting communities, water resources, industries like skiing, and sensitive ecosystems at heightened risk. Accurate prediction of future snowfall accumulation in mountains is critical but challenged by the variable effects terrain has on precipitation patterns.

"Mountain snowpack is a vital source of water for communities across the western states," said Jay Mace, U professor of atmospheric sciences and a lead on the remote sensing components of the field campaign. "By deploying an integrated network of ground-based, airborne and satellite instruments, we can gain valuable insights into the chain of processes shaping snowfall, from large weather systems down to the microscale."

The U’s Storm Peak Laboratory, a premier high-elevation atmospheric monitoring station in Steamboat Springs, Colorado, will play a central role. During the upcoming winter season, the field site will host multiple radar systems, precipitation sensors, cloud particle imagers and other specialized instrumentation provided by the U and partner institutions

Claire Pettersen, an assistant professor of climate and space sciences and engineering at the University of Michigan, is the principal investigator of the project, leading the deployment of snow sensing equipment and multi-wavelength remote sensors at the midmountain site. We hope that our catalog will ultimately improve winter storm forecasts and tell western cities when to expect a drought because of insufficient snowpack,” said Pettersen.

The coordinated deployment brings together more than 30 cutting-edge instruments from five research universities. It aims to collect an unparalleled dataset documenting the impacts of orographic effects on snowfall from the broadest atmospheric scales down through the cloud microphysics. By pairing measurements of snowflake size and shape with radar measurements of clouds, the researchers will build a large catalog of data showing how storm systems change as they move over mountains, which will improve forecasts of snowfall and snowpack in these areas.

"This campaign gives us a rare opportunity to integrate specialized radars, balloon measurements, surface instrumentation and more into one cohesive study of snowfall formation processes over mountains," said Atmospheric Sciences Professor Gannet Hallar, director of Storm Peak Laboratory and co-investigator of the S2noCliME project. "The impacts of declining snowpack are far-reaching for the economy and way of life in the West. This combined data will help advance our models and predictive capabilities."

The S2noCliME project also includes scientists from the University of Washington, the University of Wisconsin-Madison, Colorado State University and Stony Brook University. 

Read the announcement from the University of Michigan here.

By Bianca Lyon

2024 College of Science Awards

 

2024 College of Science AWARDS


The College of Science is committed to recognizing excellence in education, research, and service. Congratulations to all our 2024 College of Science award recipients!

 

Student Recognition


Research Scholar:
Leo Bloxham, BS Chemistry


Outstanding Undergraduate Student:
Muskan Walia, BS Mathematics


Outstanding Graduate Student:
Santiago Rabade, Geology & Geophysics

Faculty Recognition

Excellence in Research: Zhaoxia Pu, Professor, Department of Atmospheric Sciences

Excellence in Teaching and Mentoring: James Gagnon, Assistant Professor, Biological Sciences


Distinguished Educator:
Diego Fernandez, Research Professor, Geology & Geophysics


Distinguished Service:
Marjorie Chan, Distinguished Professor, Geology & Geophysics


Postdoc Recognition


Outstanding Postdoctoral Researcher:
Rodolfo Probst, Science Research Initiative

Staff Recognition


Staff Excellence Award:
Maddy Montgomery, Sr. Academic Advisor, College of Science


Staff Excellence:
Bryce Nelson, Administrative Manager, Physics & Astronomy


Safety Recognition


Excellence in Safety:
Wil Mace, Research Manager, Geology & Geophysics


Outstanding Undergraduate Research Award


Outstanding Undergraduate Researcher (College of Science):
Dua Azhar, Biological Sciences


Outstanding Undergraduate Researcher (College of Mines & Earth Sciences):
Autumn Hartley, Geology & Geophysics


Outstanding Undergraduate Research Mentor Award


Office for Undergraduate Research Mentor (College of Science):
Sophie Caron, Associate Professor, Biological Sciences


Outstanding Undergraduate Research Mentor (College of Mines & Earth Sciences):
Sarah Lambart, Assistant Professor, Geology & Geophysics


>> HOME <<

 

Sizing Up Courthouse Crack

Sizing Up Courthouse Crack


February 29, 2024

Geohazards, due to the way they constantly change, are a source of useful research into landslides and how they happen.

 

^ Erin Jensen at the Courthouse Mesa. Credit: courtesy of Erin Jensen. ^^ Banner Photo: Erin Jensen in Courthouse Crack. Credit: Jeff Moore.

When landslides and slope failures occur in our built and natural environments, damaging property and threatening life, there’s a scramble to secure reliable assessments to prevent further damage. But what if there were ways to measure the character and instability of rock and soil beforehand and to predict potential disasters?

Recently, PhD student Erin Jensen used seismic resonance measurements to characterize the Courthouse Crack, a potentially hazardous rock slope near Moab, Utah that is part of the Courthouse Mesa. “It’s important to be able to see a site like this in person,” Jensen says, “and really appreciate the size and scale. I get to experience firsthand all the different mechanisms and influences that are happening at a particular site.”

Seismic resonance is an emerging technique within the field of geohazards and has allowed Jensen to collect more data on the Courthouse Mesa instability than can be obtained with traditional approaches.

Perhaps surprising to the uninitiated, structures like buildings, bridges, as well as natural rock formations like arches have natural vibration modes and are constantly in motion at their resonance frequencies. The new technique can help detect and characterize rock slope instabilities. Using sensitive seismic instruments has changed how researchers detect changes in slope stability and what those changes look like.

“Traditional techniques are easy to implement, and fairly inexpensive,” Jensen says. “But the main limitation is that they’re really only measuring the surface of an instability. They aren’t providing much information about the internal structure, or what’s going on at depth.”

Seismic monitoring not only bridges the gap between surface and subsurface techniques but does so without being structurally invasive, though it can be costly. In the end, Jensen used a combination of new and traditional techniques to create a clearer picture of the instability of Courthouse Crack as a whole.

The mother of invention
At sites like Courthouse Mesa, traditional methods include expensive means of drilling and field mapping which means measuring the cracks you can see, plotting it out on a map, and viewing the geometry of instability. Alternatively, generating field data with seismic resonance and then coupling the data with numerical models result in an improved picture of crack conditions, which Jensen then uses to describe the instability geometry and how the Courthouse Crack’s stability might fail. “The combination of new and traditional techniques,” Jensen says,  “generates an improved picture of landslide behavior and failure development.”

“We aren’t really concerned about imminent failure or any hazard to the public,” continues Jensen, specifically about Courthouse Mesa. “So it’s a really good spot to use as a field laboratory” and to use different seismic resonance techniques to understand work with rock slope instabilities and how they can be applied to different types of landslides, an obvious application for civil engineers, planners, and builders. Jensen’s work is a reminder that scientific inquiry is not just about discovering unknowns in the natural world but also about developing and refining new tools that have broader implications elsewhere. In this scenario, geological necessity has become the mother of invention.

With friends at Rainbow Bridge, Utah. Credit: courtesy Erin Jensen.

“I came to the U because I was interested in working with Jeff,” she says of Associate Professor Jeff Moore who is her advisor and leads the geohazards research group. His work focuses on the mechanics of processes driving natural hazards and shaping the evolution of bedrock landscapes. Utah is in fact a prime location for research into geohazards and understanding the instability of rock formations because of the abundance of natural rock formations found in places such as Arches National Park.

Jensen received her undergraduate degree in physics and civil engineering. Before coming to the U, she worked on a variety of landslide projects during her master’s degree work in geological engineering and with the US Geological Survey. At the U, she had an opportunity to develop and apply techniques that the geohazards group had been using for a decade. Before this, Moore and his group had used seismic resonance techniques to study natural arches and towers but had not yet applied these methods to large rock slope failures like those at Courthouse Mesa.

Jensen and Moore build on past studies in order to refine and move instrumentation forward by answering basic questions such as how the techniques of seismic resonance measuring can be used at other sites. Seismic resonance methods enable geohazard practitioners to better characterize and monitor potentially hazardous unstable rock slopes, especially those where invasive equipment cannot be installed, and again providing a potential service for developers and engineers.

Another benefit of the instruments Jensen is using is that she can continuously track seismic data to monitor how the site’s instability responds to temperature and rainfall changes. Jensen can use this data to check if the changes are associated with progressive failure of the rock slope. For this project, she used a single seismometer installed on the rock surface for three years and tracked the resonance frequencies of the landslide over time. What she found was that the Courthouse instability is particularly affected by thermal stresses created by heating and cooling, which causes the crack to open and close both daily and on a seasonal cycle. “We see a pretty big seasonal change,” Jensen says. “The Courthouse Crack opens and closes about fifty millimeters annually. It’s very slowly increasing and opening by millimeters per year.”

In the future, characterization measurements repeated in another season at the same site could be useful to observe the changes based on larger swings in temperature and climate. These measurements could also detect a continuing extension and failure of the cracked mesa. Coming back to the site several years later would be useful to observe changes in the overall geometry of the Courthouse Mesa.

Creating another technique in the toolkit of geological engineering is important for Jensen and her group because it helps mitigate outside risks. Her work, which is being published soon,  is instrumental in pushing the new technique for practical implementation and helps show how one can monitor landslide behavior. Conceptually, seismic resonance measuring can anticipate what kinds of other data and observations might be seen in other landslides.

Part of the project was stepping back from the site and doing conceptual and numerical modeling, such as testing out how frequency decreases with slope failure. This helps to predict how resonance frequencies will respond during progressive rock slope failures of different types. These models give new insights where field data does not exist, because instrumented rock slope failures are very rare.

Sometimes complex patterns of resonance frequency change before failure, and the models showed, for the first time, the expected form of resonance frequency change as ultimate slope collapse approaches. Field measurements like those at Courthouse Mesa are invaluable for establishing the new approach and understanding the limitations.

Erin Jensen’s work is taking her far afield from Utah. She is preparing for a postdoctoral fellowship with the US Geological Survey as part of the Mendenhall Research Fellowship Program. Her research will focus broadly on landslides in Alaska, as well as how landslides are affected by glacial retreat and climate change. <

By CJ Siebeneck

You can read the entire Geology & Geophysics Deptartment magazine Down to Earth where this story originally appeared here.

Measuring Black Carbon

Black carbon sensor could fill massive monitoring gaps


February 22, 2024

Black carbon is the most dangerous air pollutant you’ve never heard of. Its two main sources, diesel exhaust and wood smoke from wildfires and household heating, produce ultrafine air particles that are up to 25 times more of a health hazard per unit compared to other types of particulate matter.

 

^ The AethLabs microAeth MA350. ^^ Banner Photo above: Daniel Mendoza

Despite its danger, black carbon is understudied due to a lack of monitoring equipment. Regulatory-standard sensors are wildly expensive to deploy and maintain, resulting in sparse coverage in regions infamous for poor air quality, such as the greater Salt Lake City metropolitan area in Utah.

A University of Utah-led study found that the AethLabs microAeth MA350, a portable, more affordable sensor, recorded black carbon concentrations as accurately as the Aerosol Magee Scientific AE33, the most widely used instrument for monitoring black carbon in real time. Researchers placed the portable technology next to an existing regulatory sensor at the Bountiful Utah Division of Air Quality site from Aug. 30, 2021-Aug. 8, 2022. The AethLabs technology recorded nearly identical quantities of black carbon at the daily, monthly and seasonal timescales. The authors also showed that the microAeth could distinguish between wildfire and traffic sources as well as the AE33 at longer timescales.

Because black carbon stays close to the source, equipment must be localized to yield accurate readings. The microAethsensor’s portability would allow monitoring at remote or inaccessible stationary sites, as well as for mobile use.

“Having a better idea of black carbon exposure across different areas is an environmental justice issue,” said Daniel Mendoza, research assistant professor of atmospheric sciences at the University of Utah and lead author of the study. “The Salt Lake Valley’s westside has some of the region’s worst air quality partly because it’s closest to pollution sources, but we lack the ability to measure black carbon concentrations accurately. Democratizing data with reliable and robust sensors is an important first step to safeguarding all communities from hazardous air pollution.”

 

Read the entire story by Lisa Potter in @TheU

Read the study published on Feb. 1, 2024, in the journal Sensors.

 

Read the full story by Sean Higgins at KUER 90.1.

Utah’s Warm Wet Winter

A warm, wet winter in Utah but don’t blame El Niño


February 22, 2024

For Jackie May, this winter’s rain in the Salt Lake Valley has led to a lot of second-guessing when it comes to taking the ski bus to the mountains.

 

She typically plans her work schedule around making time for snowboarding.

^ Michael Wasserstein. ^^ Banner photo above: Fog drapes the Wasatch Mountains near Cottonwood Heights as valley rain and mountain snow have been the standard storm pattern for much of Utah this winter, Feb. 20, 2024. Credit: Sean Higgins/KUER.

“Being down here, I'm like, ‘what am I doing? Should I go back to work?’” she said while waiting for the Utah Transit Authority ski bus at the mouth of Big Cottonwood Canyon. And then when I go up in the mountains, I'm like, OK, no, [winter] is still happening. This is how I want to spend my time.”

Although this winter has not had the same record-setting snowfall as last winter, not everyone is disappointed to see no snowbanks in the valley. I don't like to shovel,” said fellow bus rider Dianne Lanoy. “I do have a good car in the snow, but I don't like to drive in the snow. So, keep [the snow] up in the mountains.”

Even with more rain than snow at the lower elevations and a slow start to the winter, snowpack levels for this time of year are above average statewide. It’s also an El Niño year. That’s when warmer, wetter weather from the Pacific Ocean moves in and usually creates more precipitation.

But don’t go blaming El Niño for this winter’s wacky weather just yet. “El Niño or La Niña really means nothing for snow and precipitation in northern Utah,” says University of Utah atmospheric sciences Ph.D. student Michael Wasserstein. “Prior literature has shown that El Niño can produce lots of precipitation in Utah, or it can produce little precipitation in Utah … I don't think we can draw any conclusions about this winter's weather based on El Niño patterns.”

Wasserstein is the lead author of a new study that dives into why the Wasatch Mountains get so much snow. As it turns out, it’s all about a diversity of storm types and weather patterns.

Read the full story by Sean Higgins at KUER 90.1.

Utah’s Bonneville Salt Flats Has Long Been in Flux

Utah’s Bonneville Salt Flats has long been in flux


February 21, 2024

Salt crusts began forming long after Lake Bonneville disappeared, according to new U research that relied on pollen to date playa in western Utah.

 

Jeremiah Berneau. Credit: Chevron

It has been long assumed that Utah’s Bonneville Salt Flats was formed as its ancient namesake lake dried up 13,000 years ago. But new research from the University of Utah has gutted that narrative, determining these crusts did not form until several thousand years after Lake Bonneville disappeared, which could have important implications for managing this feature that has been shrinking for decades to the dismay of the racing community and others who revere the saline pan 100 miles west of Salt Lake City.

This salt playa, spreading across 40 square miles of the Great Basin Desert, perfectly level and white, has served as a stage for land-speed records and a backdrop for memorable scenes in numerous films, including “Buckaroo Banzai” and “Pirates of the Caribbean.”

Relying on radiocarbon analysis of pollen found in salt cores, the study, published Friday in the journal Quaternary Research, concludes the salt began accumulating between 5,400 and 3,500 years ago, demonstrating how this geological feature is not a permanent fixture on the landscape.

“This now gives us a record of how the Bonneville Salt Flats landscape responds to environmental change. Originally, we thought this salt had formed here right after Lake Bonneville and it was a static landscape in the past 10,000 years,” said the study’s lead author, Jeremiah Bernau, a former U graduate student in geology. “This data shows us that that’s not the case, that during a very dry period in the past 10,000 years, we actually saw a lot of erosion and then the accumulation of gypsum sand. And as the climate was becoming cooler and wetter, then the salt began to accumulate.”

Read the full story by Brian Maffly in @The U

New Tyrannosaurus Species

Scientists Conclude New Mexico Fossil Is New Tyrannosaurus Species


 

 

Scientists reassessing a partial skull first unearthed in 1983 in southeastern New Mexico have concluded that the fossil represents a new species of Tyrannosaurus - the fearsome apex predator from western North America at the twilight of the dinosaur age - that predated the fabulously famous T. rex.

^ Mark Loewen. ^^ Banner image above: An artist's reconstruction of the newly identified dinosaur species Tyrannosaurus mcraeensis, based on a partial skull fossil collected in New Mexico, U.S. Sergei Krasinski/Handout via REUTERS

Subtle differences from Tyrannosaurus rex observed in the skull merit recognizing the dinosaur as a separate species called Tyrannosaurus mcraeensis that lived several million years before T. rex and was comparable in size, the researchers said on Thursday. The skull previously was identified as a T. rex.

Other researchers expressed doubt that it represents a new Tyrannosaurus species, saying differences between it and other T. rex skulls were unremarkable and the study's conclusion that the fossil dated to 71-73 million years ago was problematic.

T. rex has been the sole species of the genus Tyrannosaurus recognized since the dinosaur was first described in 1905. A genus is a broader grouping of related organisms than a species. T. rex fossils date to the couple million years before an asteroid struck Earth 66 million years ago, dooming the dinosaurs.

The first parts of the New Mexico skull were found near the base of Kettle Top Butte in 1983, with more later discovered.

Paleontologist Anthony Fiorillo, executive director of the New Mexico Museum of Natural History & Science and one of the authors of the study published in the journal Scientific Reports, said about 25% of the skull has been collected. Most of the braincase and the upper jaws are missing.

"Compared to T. rex, the lower jaw is shallower and more curved towards the back. The blunt hornlets above the eyes are lower than in T. rex," said paleontologist Nick Longrich of the University of Bath in England, another of the researchers.

"It's the nature of species that the differences tend to be subtle. The key thing is they're consistent. We looked at lots of different T. rex, and our animal was consistently different from every known T. rex, in every bone," Longrich added.

Vertebrate paleontologist Mark Loewen, associate professor lecturer, Department of Geology and Geophysics, University of Utah is a co-author of the paper and Resident Research Associate at the Natural History Museum of Utah.

Read the entire story by Will Dunham (Reuters) in USA Today.

Southwest Sustainability Innovation Engine

Regional Innovations Engine

University of Utah part of new NSF-funded initiative to ensure regional climate solutions and economic opportunities.


 

The National Science Foundation (NSF) on Monday announced the University of Utah along with six core academic partners will be part of a multi-institutional enterprise to confront the climate challenges facing the desert Southwest and spur economic development in the region.

The effects of climate change are acutely evident in the American Southwest, from the desertification of Utah’s Great Salt Lake to the record-breaking extreme heat in Arizona and the dwindling supply of the Colorado River reaching Nevada.  

NSF Engines: Southwest Sustainability Innovation Engine (SWSIE) will use these challenges to catalyze economic opportunity and seeks to establish the Southwest as a leader in carbon capture, water security and renewable energy and bring high-wage industries to the region. Southwest Sustainability Innovation Engine unites academic, community, nonprofit and industry partners across Arizona, Nevada and Utah that are committed to this goal.

SWSIE is among the first proposals selected by the NSF to establish a Regional Innovation Engine, a first-of-its-kind NSF program to create focused research and technology transfer hubs. The NSF will fund SWSIE’s initial development and growth with $15 million over the next two years. The engine can be renewed for up to 10 years with $160 million in funding available for each Regional Engine.

The U of U’s core academic partners in SWSIE are Arizona State University, who serve as the lead partner of the project, the University of Nevada, Las Vegas, the Desert Research Institute, the Water Research Foundation, SciTech Institute and Maricopa Community Colleges. The team includes over 20 senior personnel including faculty from Atmospheric Sciences, Biological Sciences, Civil and Environmental Engineering, Chemical Engineering, Communications, Electrical and Computer Engineering, Geography, and Geology and Geophysics.  The College of Science's Wilkes Center for Climate Science and Policy is also part of the consortium. 

THE U’S LEADERSHIP TEAM

Brenda Bowen.

At the helm of the U leadership team is Brenda Bowen, co-PI on the SWSIE project and co-lead of the community development working group. Bowen is professor of geology and geophysics, chair of department of atmospheric sciences, and director of the Global Change and Sustainability Center at the U.

“We are so thrilled to have the opportunity to grow academic, industry, and community partnerships that unite Utah, Nevada, and Arizona as we innovate sustainable solutions for water, energy, and carbon,” she says. “This is work that needs to happen, and this award will allow us to align our efforts to maximize the positive impacts across the region.” 

 

 

 

 

 

 

 

 

Read the entire story by Xoel Cardenas, Sr. Communications Specialist.,Office of the Vice President for Research here.