Accessibility Menu
Press ctrl + / to access this menu.

Our DNA 2022

Our DNA


Spectrum 2022

Black Holes, Student Awards, Research Awards, LGBT+ physicists, and more.

Read More
Aftermath 2022

Student awards, Faculty Awards, Fellowships, and more.

Read More
Our DNA 2022

Erik Jorgensen, Mark Nielsen, alumni George Seifert, new faculty, and more.

Read More
Notebook 2022

Student stories, NAS members, alumni George Seifert, and Convocation 2022.

Read More
Discover 2021

Biology, Chemistry, Math, and Physics Research, SRI Update, New Construction.

Read More
Our DNA 2021

Multi-disciplinary research, graduate student success, and more.

Read More
Aftermath 2021

Sound waves, student awards, distinguished alumni, convocation, and more.

Read More
Spectrum 2021

New science building, faculty awards, distinguished alumni, and more.

Read More
Notebook 2021

Student awards, distinguished alumni, convocation, and more.

Read More
Spectrum 2021

Student awards, distinguished alumni, convocation, and more.

Read More

College Rankings

College Rankings


U.S. News & World Report has released their 2022-2022 National University Rankings. The University of Utah is now ranked No. 1 in Utah and No. 42 nationally among public universities.

The College of Science fared even better. National rankings for public universities put Biology at No. 13, Chemistry at No. 20, Mathematics at No. 22, and Physics & Astronomy at No. 47.

There are many factors used to determine a school’s final ranking in the U.S. News & World Report but one factor that is not considered is cost. When cost is factored, there are few universities that challenge the University of Utah.

>> HOME <<

Distinguished Service

Distinguished Service


Pearl Sandick

Pearl Sandick receives Distinguished Service Award.

Pearl Sandick, Associate Professor of Physics and Astronomy and Associate Dean of Faculty Affairs for the College of Science, has received the Linda K. Amos Award for Distinguished Service to Women. The award recognizes Sandick’s contributions to improving the educational and working environment for women at the University of Utah. Amos was the founding chair of the Presidential Commission on the Status of Women, was a professor of nursing, and served for many years as Dean of the College of Nursing and as Associate Vice President for Health Sciences. Throughout her career, Amos was the champion for improving the status and experience of women on campus.

“This is a great honor. I’m privileged to work with amazing students and colleagues who understand the value of a supportive community,” said Sandick. “I am really proud of what we’ve accomplished so far, and I’m excited to start to see the impact of some more recent projects.”

Sandick is a theoretical particle physicist, studying some of the largest and smallest things in the universe, including dark matter, the mysterious stuff that gravitationally binds galaxies and clusters of galaxies together.

Upon her arrival as an assistant professor in 2011, Sandick founded the U’s first affinity group for women in physics and astronomy. For the last two decades, the national percentage of women physicists at the undergraduate level has hovered around 20%. The percentage at more advanced career stages has slowly risen to that level, thanks in part to supportive programming designed to increase retention. The goal of the affinity group within the department is to foster a sense of community and provide opportunities for informal mentoring and the exchange of information, ideas, and resources. The group has also been active in outreach and recruiting. As of fall 2021, the group is now known as PASSAGE, a more inclusive group focused on gender equity in physics and astronomy.

Within the department and in the College of Science, Sandick has improved a number of processes, including writing an effective practices document for faculty hires, based in large part on research related to equitable and inclusive recruitment practices and application review. As Associate Dean, she worked with the College of Science Equity, Diversity, and Inclusion Committee (which she currently chairs) to create college-wide faculty hiring guidelines, which were adopted in 2020. She was also instrumental in several other structural and programmatic initiatives to create a supportive environment in the department, such as the development of a faculty mentoring program and the establishment of “ombuds liaisons” to connect department members with institutional resources.

Through her national service related to diversity and inclusion, Sandick has gained a variety of expertise that she has brought back to the campus community. For example, she has given workshops in the department, the college, and across campus on communication and negotiation, implicit bias, conflict management, and mentorship.

Here are comments from women in the Department of Physics & Astronomy, who have participated with Dr. Sandick in activities sponsored by PASSAGE:

“Being part of PASSAGE has allowed us to connect with others who share similar experiences in the department. It has also helped us connect with people, both within the university community and at other institutions, who have served as role models and mentors.” –Tessa McNamee and Callie Clontz, undergraduates

"PASSAGE became a lifeline during the pandemic and continues to be so. It helps equip members with the tools that they need in various aspects of academia. Professor Sandick makes it her mission to guide us, especially in a time of crisis. I am personally thankful to her and to all of the group members.” –Dr. Ayşegül Tümer, Postdoctoral Research Associate

In addition to her research, Sandick is passionate about teaching, mentoring, and making science accessible and exciting for everyone. She has been recognized for her teaching and mentoring work, with a 2016 University of Utah Early Career Teaching Award and a 2020 University of Utah Distinguished Mentor Award. In 2020, she also was named a U Presidential Scholar. As discussed earlier, women are still widely underrepresented in physics, and Sandick is actively involved in organizations that support recruitment, retention, and advancement of women physicists. She has served on the American Physical Society (APS) Committee on the Status of Women in Physics and as the chair of the National Organizing Committee for the APS Conferences for Undergraduate Women in Physics. She is currently chair of the APS Four Corners Section, which serves approximately 1,800 members from the region.

- by Michele Swaner, first published at physics.utah.edu

>> BACK <<

 

IF/THEN Ambassador

IF/THEN Ambassador


Janis Louie

IF/THEN is designed to activate a culture shift among young girls to open their eyes to STEM careers.

The august statuary of Washington, D.C. will soon include a University of Utah chemistry professor. A 3D-printed statue of Janis Louie will stand with 119 other statues of women in science, technology, engineering and math (STEM) in and around the National Mall from March 5-27.

The exhibit places Louie among the largest collection of statues of women ever assembled, according to the Smithsonian Institution, and celebrates the participants in the IF/THEN Ambassador program that is “designed to activate a culture shift among young girls to open their eyes to STEM careers,” according to the initiative’s website.

“I hope visitors feel inspired, encouraged and empowered,” says Louie. “For me, the exhibit is meant to show that STEM isn’t for one type of person, STEM is for everyone!”

Inspiring a Generation

The IF/THEN Ambassador Program is sponsored by Lyda Hill Philanthropies as part of the IF/THEN initiative. The initiative aims to “advance women in STEM by empowering current innovators and inspiring the next generation of pioneers.”

The Ambassadors program is a part of that initiative, and assembled high-profile women in STEM to act as role models for middle school-age girls. Ambassadors received media and communications training and then engaged in outreach work nationally.

Dr. Louie and family.

After selection in 2019, Louie traveled to a three-day conference with the other Ambassadors. “It was amazing!” she says. “It is the only conference I have ever been to that was 100% female scientists!”

It was a diverse group. “The featured women hail from a variety of fields,” she says, “from protecting wildlife, discovering galaxies and building YouTube’s platform to trying to cure cancer.”

Later, Louie appeared on an episode CBS’ Mission Unstoppable to draw connections between chemistry and the world around us. She also pitched in when another Ambassador’s summer STEM camp needed to go online with the onset of the COVID-19 pandemic.

“She asked a variety of the Ambassadors to present to the girls over Zoom, so that the STEM camp could still be impactful,” Louie says. “I was delighted to be one of the presenters!”

Meeting her statue

The process of creating the 120 statues was very different from the traditional sculpture techniques that created the hundreds of other statues in Washington, D.C. At the initial conference, Louie and the other Ambassadors each took a turn being digitally scanned in a booth with 89 cameras and 25 projectors so that the statues could later be 3D printed. (Learn more about the process of creating the exhibit here.)

When completed, the orange statues appeared in Dallas and New York City before the full exhibit was first unveiled in Dallas, Texas in May 2021. Washington, D.C. is the exhibition’s second stop.

Louie and her family traveled to Dallas to see her statue.

“It was surreal, in the best way!” she says, of meeting her doppelgänger.  “My children were able to see not only myself but a field of orange statues of women pioneers—and I was thanked by someone visiting the exhibit for making a difference.”

Meet the other Ambassadors featured in the exhibit here.

 

by Paul Gabrielsen, first published in @theU

 

Photos courtesy of the IF/THEN® Collection

 

Student Spotlights


Phi Beta Kappa

Fulbright Scholar

Outstanding Graduate Student

Research Scholar

Outstanding Post-Doc

NSF Fellowship

Outstanding Post-Doc

NSF Fellowship

Outstanding Undergraduate

Student Researcher

>> HOME <<


Galápagos Letters

Galápagos Letters


by Nora Clayton, first published @ biology.utah.edu

January 17, 2022

Adventure Awaits

Getting ready for a field expedition is always an adventure. After packing, COVID testing, homework, buying supplies, planning travel, and coordinating a study, we are very ready to be on our way. Read More >

1

January 24, 2022

El Garrapatero

Our first day in the field we went to “El Garrapatero.” Meaning “Tick Eater,” both the site and its namesake, which happens to be a beach, are named after a common bird called an Ani. Read More >

2

January 31, 2022

Philornis Downsi

Philornis downsi is well known because its larvae are harmful to bird nestlings. The larvae suck blood, hence the “vampire” part of their name. Read More >

3

February 7, 2022

Lions, Iguanas, and Birds

People and wildlife share the space, which means you have to be careful not to step on an iguana or sit too close to a sea lion! Read More >

4

February 14, 2022

Field Observations

Readers should note that biologists, grad students, and intrigued 13-year-olds may stop frequently to observe things. Read More >

5

February 21, 2022

Galápagos Portraits

If it’s true that a picture paints a thousand words, you will have several thousand to read today! Read More >

6

February 28, 2022

Plumber’s Camera

We’re beginning to look inside the nests with a camera, taking notes on the contents of each. Read More >

7

March 7 2022

It’s a Small World

Every day, walking around town, to the beach, the station, or on our patio outside, our group constantly points out ants, carpenter bees, geckos, millipedes, katydids and grasshoppers. Read More >

8

March 14, 2022

Galápagos Penguins

We woke up early to get ready, and catch a bus to the dock on the other side of the island. The drive went through the highlands, where it was beginning to rain. Read More >

9

March 14, 2022

Old Town Quito

The city, full of people, is so different from Puerto Ayora. The streets are packed with shops and each big hill is covered in bright colorful buildings. Read More >

10

Originally published @ biology.utah.edu

Of Mice and Monarchs

Of Mice and Monarchs


Sara Weinstein, Postdoctoral Researcher

Monarch butterflies possess a potent chemical armor. As caterpillars, they eat plants filled with toxic cardenolides that build up in their bodies and make them unpalatable to most—but not all—predators. In central Mexico, where the largest winter monarch aggregations occur, scientists observed that rodents attack monarchs that fall to the ground. In particular, the black-eared mouse (Peromyscus melanotis) specializes in these bitter-tasting insects, eating as many as 40 per night.

In a new study, University of Utah biologists found that mice at California monarch overwintering sites can also consume monarch butterflies. Working at one of the largest monarch aggregations outside of Mexico, Pismo State Beach Monarch Butterfly Grove, the researchers discovered that the western harvest mouse (Reithrodontomys megalotis) also ate the grounded monarchs. However, with the precipitous decline in western monarch populations, this butterfly buffet may be in jeopardy.

A harvest mouse munching on a monarch.

The authors do not think that rodents are contributing to the western monarch decline, nor that the monarchs are the only thing that mice can eat. Rather, documenting this new feeding behavior is a reminder of how little we know about the interactions that may be lost as insect populations decline.

“We are in an insect apocalypse right now. There are estimates that 40% of studied invertebrate species are threatened and that over 70% of flying insect biomass is already gone. This is devastating on its own and is also going to have enormous impacts on the other organisms that feed on insects,” said Sara Weinstein, the postdoctoral researcher who led the study.

“Western monarchs and other western butterflies need conservation attention and part of that awareness-raising is illuminating the many ways these animals are interconnected to other insects, birds, mammals, as well as our human communities. This study helps us appreciate more deeply how fewer butterflies means less food for other native animals” said Emma Pelton, senior conservation biologist at the Xerces Society.

Weinstein with a lab-reared monarch.

The study published in the journal Ecology on Dec. 12, 2021.

To study mouse-monarch interactions, the researchers first trapped rodents in the grove in February 2020. The rodents were released, but their feces were kept to screen for monarch DNA—which they found in one sample. This first survey occurred in late winter as monarchs were leaving the aggregation and few remained for mice to munch. Weinstein and colleagues intended to return the following fall during peak monarch season. However, after years of decline, the western monarch population crashed.

“At a site where 100,000 butterflies used to roost, in 2020 there where were fewer than 200 monarchs. So, we had to change tactics,” Weinstein said. “We tested whether rodents would feed on the butterflies using captive-reared monarchs.”

Weinstein set up lab-reared monarch carcasses under camera traps and captured footage of wild harvest mice eating butterflies. She also caught a half dozen mice and offered them monarchs. The mice ate monarchs, typically favoring the abdomen or thorax, high-calorie parts with fewer toxins.

“Many rodent species are likely to have some resistance to cardenolides in monarchs, due to genetic changes at the site where these toxins bind,” said Weinstein. “The Pismo Grove is one of hundreds of western monarch aggregation sites, and it seems likely that, at least in the past, rodents throughout the western monarch range may have supplemented their winter diets with monarchs. If you can handle the cardenolides in a monarch, their bodies are full of fat and offer a pretty good meal.”

Animation of mouse eating a butterfly.

Mouse eating an entire monarch butterfly.

This meal will be a lot harder to find, as over 90% of western monarchs have disappeared in the last 40 years. The missing beauties will surely impact the ecosystem that depends on them for food.

Denise Dearing, Distinguished Professor at the U, was senior author of the study. Photos and animations by Sara Weinstein.

Find the study, “Harvest mice (Reithrodontomys megalotis) consume monarch butterflies (Danaus plexippus), in the journal Ecology: https://doi.org/10.1002/ecy.3607

 

by Lisa Potter, first published in @theU

 

>> BACK <<