Thomas Tang: Taking it to the Startup Slopes

Taking it to the startup slopes


Above: Thomas Tang

Thomas Wei-Tsu Tang, BS’94 in physics, is an extraordinary competitor.  A two-time Olympian in alpine skiing (Calgary, 1988 and Albertville, 1992), he has also competed in a World Cup and a World Championship in skiing.

 

“I am proud to be an Olympian,” says Tang. “Elite competition pushes the limits of humanity, our physical and mental capacity, our emotions and compassion for each other.” For Tang, pushing those limits has extended from the slopes to business, to family and, finally, to something else that makes this U alumnus extraordinary, his capacity to pay it forward.

Tang is the founder and president of Apantac LLC, a global leader in design and development of high-quality, cost-effective image signal processing equipment. The company will be celebrating its 17th anniversary in 2025.

“The Apantac product line, which now includes more than 200 items, has been designed to provide the broadcast and professional audio-video industry with flexible and innovative technology solutions for video processing and signal extensions and switching,” says Tang.

Apantac clients include TV stations, news studios and sports broadcasters like ESPN and Fox Sports. “The KSL-TV broadcast house in downtown Salt Lake is a wonderful local customer, they used our equipment to broadcast the 2024 Paris Olympics,” says Tang. “Also, large social media companies like Google, Meta, and Amazon use our products for their worldwide global event centers.”

Prior to founding Apantac, Tang was the director of marketing for Philips Broadcast in West Valley City.  After Philips divested, he decided to help a small startup company in Redmond, Washington and oversaw sales and marketing as well as strategic planning and product development. While there, from 2004 to 2008, Tang grew the business more than eightfold.

"At this small startup with very limited resources, I was working so hard, one day my wife said to me, ‘If you’re going to work this hard, you should work for yourself!’ This put the idea in my head that I should start my own company. I knew that I wanted to make products for the video industry, so I quit my job in early 2008 and started working on how to realize these ideas,” says Tang.

“During the first three years, times were tough,” says Tang. “And when things were not going well, I dug into being an Olympian. When you train, you know the pain is transitory, and you know you’re getting stronger and something better is coming! Athletes understand they’re not always going to have a good day, but hard work and persistence pay off.”

By the end of 2008, he had begun developing products in his basement. In April 2009, the company’s first product, a Multiviewer, was launched. The device allowed one user to view multiple video sources on a single screen or across multiple screens. It received the prestigious Pick Hit Award at the National Association of Broadcasters conference. The award is given to products that demonstrate outstanding technology and innovation not previously showcased at the event.

Since then, Apantac has grown significantly, offering more than 200 products and shipping to more than 40 countries. Tang and his team had been involved in numerous broadcast and professional audio-visual projects worldwide.  Apantac’s customers include national broadcasters, Soccer World Cups, Olympic games and more.  “We now ship from pole to pole, from Greenland to New Zealand,” says Tang. Apantac has offices in the U.S., Europe, Latin America and Asia.

From Taipai to Salt Lake

Tang’s story of determination and persistence started in Taipei, Taiwan, where he was born in 1964. “I was the youngest, and the only son in a Taiwanese family, so the pressure for me to succeed was extremely high,” he says.

Tang attended a strict private school, Tsai Hsin, that started in kindergarten. He always loved sports, but he struggled academically. “My grades were always below average,” says Tang.  “I did not perform well in the traditional Taiwanese academic system. I was not really allowed to play sports, because the teachers in my school would punish me for not doing well academically. I was stuck in a rut and my parents realized that and decided it was best to move to the United States for a change of environment.”

Tang’s father, Mei-Chun Tang, was educated in the U.S. at Berkeley and at Columbia. At the time, he was a professor of anthropology at National Taiwan University and there was an exchange professorship program between the University of Utah and National Taiwan University.

As part of the exchange program, the family moved from Taipai to Salt Lake City in September 1977, when Tang was 13 years old. He attended 8th grade at Bryant Junior High School and began learning English as a second language.

“In 1977, Salt Lake was a very safe and small town, there was nothing past 7200 South.  I used to hitchhike to get around town,” remembers Tang. “The transition was difficult. New people, new school, new language. But being a good athlete, I was accepted very quickly into the American culture,” says Tang.

He later attended East High School. “At that time, I really wanted to go to medical school but biology was difficult for me because English was my second language. However, I was always good at math, so physics was a natural fit when I started at the University of Utah,” says Tang.

Tang remembers many faculty members in physics, especially Own Johnson, George Williams, Fritz Luty, Dave Ailion and Eugene Loh.

While attending the U, he worked in the Marriott library shelving books and eventually landed an internship in the chemistry department for faculty members Jim Wang and Chuck Wight. “Chuck was a young professor in his 30s,” says Tang. “He was a great mentor and had the most impact on me. We even published a paper together, ‘Low Temperature Photochemistry in Amorphous Films,’ Proc. SPIE 1056.”

By 1989, Tang had essentially finished his bachelor’s degree in physics. When the chance presented itself, he accepted a role at Evans & Sutherland in the computer graphics division. “I remember Microsoft came to campus to recruit me, but working at Evans & Sutherland was the ultimate honor for a U of U student, so I accepted the job.”

“In fact, Evans & Sutherland was one of the largest tech companies in the valley, employing around 1,500 people.  The management encouraged us to transfer between different departments to expand our technical horizon. My first job was porting applications between UNIX workstations, Linux kernels, PC graphics card drivers and graphical user interfaces. I later worked on several exciting projects, including the world’s first F-14, F-16, and other flight simulators.  That’s where I learned about the technology of video processing.” He stayed at Evans & Sutherland until 1997.

A sports family

Tang and his wife, Penny, met on campus in the Olpin Union building. In the 1990s, their student organization reserved a gym in the HPER Complex. “She was playing badminton, and I was playing basketball. After 10 o’clock, when the HPER building closed, a few of us decided to go to the Union to play pool. We shared a table, and the rest is history,” says Tang.

They were married in 1994 and now have three children: Emma, 23, is a recent graduate of NYU, getting ready to go to law school; Calcy, 20, is studying Kinesiology at the U; and Winston, 18, is ski racing in Europe. “All three of our kids are active in sports,” says Tang who explains that Emma was a professional figure skater who has competed internationally, and Calcy qualified for the Olympics and skied in the 2021 World Championship.

When Tang turns to his wife, his sentiment is one of respect and gratitude. “I’m extremely grateful for my wife, Penny. She encouraged me in those early years when things were tough. She came from an affluent family in Taiwan, and during our early years, she would joke about having never been ‘poor and lonely at the same time,’” remembers Tang. “Without her, I wouldn’t be where I am today.”

Bringing it full circle

While a proven competitor in sports, Tang’s more collaborative side comes to the fore with his siblings, Grace Hui Tang and Bonnie Y. Tang. The three of them have invested in a permanent named space in the main atrium of the Stewart Building, still under construction, in honor and memory of their parents, Dr. Mei-Chun Tang and Pi-Yung Chen.

A historic building, the Stewart, when its renovation is complete, will be physically joined with the new Applied Science Building and together will complete the Crocker Science Complex on Presidents Circle. A building dedication and opening ceremony is planned for July 2025.

 

Purity at a Premium in Critical Metals

PURITY AT A PREMIUM in critical metals


November 22, 2024
Above: Nd hydride made from Md oxides using the HAMR process. Credit: Pei Sun

U Researchers Secure Major Funding to Advance Critical Metals Production

 

Think about the device you're reading this on. Whether it's a smartphone, tablet, or laptop, it contains dozens of rare earth elements and critical metals that make its operation possible. Yet the United States currently relies on foreign sources for approximately 90% of some of these essential materials, creating vulnerabilities in our supply chain for everything from consumer electronics to clean energy technology

The Free lab (from left): Easton Sadler, Prashant Sarswat, Mike Free, Benjamin Schroeder. Credit: Todd Anderson

The University of Utah is taking bold steps to address this challenge. Mike Free and Prashant Sarswat, metallurgical engineers from the Department of Materials Science and Engineering,have secured two significant funding awards to advance innovative technologies for rare earth elements (REE) and critical metals (CM) processing.

The Defense Advanced Research Projects Agency (DARPA) has awarded $220,446 for developing refined REE and CM products at 90% purity. Additionally, the Department of Energy (DOE) has committed $5 million to support a comprehensive project focused on upgrading mineral resources and optimizing extraction and separation processes to achieve an exceptional 99% purity level for some individual REE and CM products.

"We're starting with unconventional resources to build a larger supply chain here in the US," explains Free, principal investigator on the projects and department chair. "We are exploring new approaches that are more environmentally friendly. Some of the technologies we're developing, like our magnetic separation process, use no additional chemicals, which are very different from conventional processing that can require hundreds of steps and  typically involves substantial amounts of acid."

The research team, which includes graduate students Easton Sadler and Benjamin Schroeder, is developing innovative separation techniques, including a unique device that uses strong magnets to separate rare earth elements based on their magnetic properties. They are also exploring new environmentally friendly extraction methods using specialized materials that can selectively absorb specific elements.

Handling the challenge

Sarswat emphasizes the challenging nature of their work: "The properties of rare earth elements are so similar that existing methods and technologies are not very effective at separating them. With our methods, whether it's magnetic or physical separation or adsorption, we can handle that challenge."

The U is one of only two institutions selected in this competitive second DOE funding round, alongside Caltech. The project team includes collaborators from Virginia Tech and has secured crucial industrial partnerships for commercialization.

Ben Shroeder demonstrating device that uses strong magnets to separate rare earth elements based on their magnetic properties. Credit: Todd Anderson

The research aims to produce:

  • Five individually separated, high-purity rare earth oxides/salts at ~90-99.99% purity
  • Five individual or binary rare earth metals at ~99.5-99.8% purity
  • Five additional ~90-99% pure individual critical metals as oxides, salts or metals from coal byproducts

Graduate students Ben Schroeder and Easton Sadler’s application and improvement of groundbreaking techniques for separating rare earth elements — essential materials for advanced technologies like high-performance magnets and precision lasers — are complementary. Schroeder's approach harnesses the magnetic properties of rare earth elements, using powerful magnets to create a sophisticated separation process. "We have a solution with multiple metals, and we want them to not be mixed together," Shroeder explains. By flowing the solution over strategically positioned magnets, he creates concentration gradients that physically separate elements based on their magnetic susceptibility. Rare earth elements, which are more magnetically responsive, get pulled into specific channels, while elements that are not magnetically responsive continue flowing, resulting in increasingly pure elemental fractions.

In contrast, Shroeder’s colleague Sadler takes a chemical approach in the lab, focusing on developing more environmentally friendly extraction methods. "The state of the art now uses organic solutions and acid, which are expensive, corrosive, and toxic," Sadler notes. He's designing innovative solid materials coated with specialized extractants like graphene and trimesic acid that can selectively capture specific rare earth elements. Through iterative experimentation, Sadler is working to create materials that can withstand acidic environments while efficiently separating elements.

Further purification and conversion

From the Utah lab, the operational sequence of the purification process extends to collaborators Aaron Noble and Distinguished Professor Roe-HoanYoon at Virginia Tech, working with physical separations of REE and CM from unwanted minerals. Once those minerals are enriched in the elements desired, they are then dissolved to form ions which go through the magnetic or specialized absorbance processes that will further separate out remaining impurities.

Following that along with additional processing some pure product will be made and other precipitated oxide material will move through a conversion process that turns the precipitated material into metal. This last step will take place in the lab of metallurgical engineering colleagues in the Department of Materials Science and Engineering, Zak Fang and Pei Sun.

focus on purity

Easton Sadler with samples of solid materials coated with specialized extractants. Credit: Todd Anderson

"Right now, China is supplying 90% of some of these markets,” explains Free, “which puts us in a vulnerable position domestically." Beyond science, this work is part of a strategic initiative to enhance national technological independence and security.

Applications of innovative separation techniques for rare earth elements cannot be overstated. Critical metals are fundamental to modern technologies like electric vehicles, semiconductors and electronic devices. By developing more environmentally friendly extraction methods, the team aims to increase the domestic supply chain for CM. "We're starting with unconventional resources, trying to build a larger supply chain here in the U.S.," Free explains. "We want to see the U.S. have more production of these critical things."

Why the focus on purity? As Sarswat notes, "For semiconductor integrated circuits or lasers, we need hyper-high purity levels. The whole device physics will be different if we're doping with impure materials."

“All along the way,” concludes Free, “We’re achieving higher and higher concentrations so that at end, we will be producing some of these materials at higher than 99% purity.”

Other than the how, how much and its expanding applications, the personal why for this bold enterprise is perhaps best articulated by graduate student Easton Sadler:  "I think I speak for Ben as well, but it's really cool to be at the cutting edge of this industry, sponsored by DARPA and the Department of Energy, working on something crucial to our economy and the country's welfare… . That makes me feel good; keeps me going in the lab.”

by David Pace

New partnership with Sandia to drive research and development

New partnership with Sandia to drive research and development


Nov 20, 2024
Above : Erin Rothwell, Vice President for Research at the U (left) and Douglas Brian Kothe, Sandia’s advanced science & technology associate labs director and chief research officer, flash the U after the signing ceremony.

The University of Utah and Sandia National Laboratories have agreed to a strategic partnership that will look to help develop collaborations in various technical areas, as well as give U researchers and students opportunities to develop new skills and research paths via working on projects in Sandia facilities.

Headquartered in Albuquerque, New Mexico, Sandia is a contractor for the U.S. Department of Energy’s National Nuclear Security Administration and supports several federal, state, and local government agencies, companies, and organizations. Through partnerships with academic, governmental, and commercial institutions, Sandia conducts research and development that supports national security.

Sandia operates laboratories, testing facilities, and offices in multiple sites around the United States. According to the memorandum of understanding (MOU) document signed by both parties, the partnership will allow Sandia and U researchers and students to have presence on each other’s campuses. Students and faculty will have the chance to work for designated periods on projects in Sandia facilities. Graduate students will have opportunities to develop new skills and research paths via joint research collaborations.

Sandia says partnerships with universities and other labs bring new technologies to the marketplace and contribute to the economic wellbeing of the nation.

With the strategic partnership in place, the U and Sandia will look to develop collaborations in various technical areas which could lead to the development of funded programs.

“Research has always been and will continue to be the foundation of our university,” said Dr. Rothwell.

Read the full article by Xoel Cardenas in @TheU.

ACCESS Scholar: Ella Bleak

ACCESS Scholar, Ella Bleak


November 18, 2024
Above: Ella Bleak

Ella Bleak’s journey as a self-proclaimed science nerd started at a young age.

Her inner nerd was fostered by high school chemistry and biology teachers, and having a professor in developmental biology with a PhD from the U as a neighbor didn’t hurt, either.  That led her to discover ACCESS Scholars, a College of Science first-year community, research and scholarship program for students in Science, Technology, Engineering and Mathematics (STEM) disciplines.

“I didn’t really have many expectations,” explained Ella. “I didn’t know very much about the program when I got into it, other than the research aspect. It ultimately was one of the main reasons I decided to come to the U because I was looking for early research opportunities. What I was not expecting was the lasting effects it had on my experience at the U.”

Through ACCESS, Ella was placed in the Karasov lab. Led by School of Biological Sciences Assistant Professor Talia Karasov, they work to study tailocins, phage-tail-like bacteriocins used by bacteria to compete with other bacteria for resources and space—essentially weapons used in a bacteria warfare. More specifically, they’re characterizing the interactions between tailocins and their target bacteria’s lipopolysaccharide (structures on the bacterial membrane which tailocins can bind) to understand how tailocins differentiate between closely related strains.

Despite an initial hesitancy due to its lack of chemistry, Ella says it’s the best lab she could have ended up in. Publishing in the Karasov lab opened up the opportunity for Ella to become a Beckman Scholar, an institutional award funding research for scholar-faculty mentor pairs, allowing her to combine her two science loves and expand her research into a biochemistry focus.

“My lab has been one of the most amazing and supportive resources I have at the U, and I am so lucky to be in that lab because of ACCESS,” says Ella. “Beyond lab work, ACCESS helped me get involved in the campus early. I was more confident in applying to jobs, talking to professors, and getting involved with clubs. ACCESS really was the thing that catalyzed all of my college experiences.”

Some of those opportunities ACCESS Scholars opened up include becoming a UROP Scholar, Teaching Assistant, and Science Ambassador for the College of Science.

“The major benefit to ACCESS compared to other research options is the community and network that becomes available to you. If you are looking for ways to find friends or mentors in college then ACCESS is the way to do it.”

Upon graduating, she plans to get a PhD in chemical biology and end up in research.

“I don’t yet know if that means academia, industry, or some other area, but I have found a love for research and know that I want to be doing it for the rest of my career.”

By Seth Harper

Climate change fueling more severe wildfires in California

Climate change fueling more
severe wildfires in California


Nov 18, 2024

Wildfires continue to damage California’s forests as human-driven climate change amplifies their impacts.

A new Environmental Research Letters study reveals that the severity of the state’s wildfires has rapidly increased over the last several decades, contributing to greater forest loss than would have been expected from past increases in burned areas.

“Fire severity increased by 30% between the 1980s and 2010s,” said Jon Wang, an assistant professor at the University of Utah School of Biological Sciences and former postdoctoral researcher at the University of California Irvine Department of Earth System Science. This means that for every acre of forest scorched by fire, the damages to mature trees are considerably higher than what occurred in the average fire several decades ago.

Jon Wang conducting field research in Norway. Photo credit: Acacia England, U.S. Forest Service

“When fire moves through an area on the forest floor, often mature trees survive and, in some situations, they may thrive from fire effects on nutrient cycling,” said study co-author James Randerson, professor in the UC Irvine Department of Earth System Science. “The new research suggests more fire is jumping into the tree crowns, causing more damage and tree mortality.”

Randerson added that wildfires also have moved into new areas with denser and more vulnerable forests. Those areas include northern mountain and coastal regions that may have been protected in the past by cooler summers and higher levels of surface moisture.

“Forest exposure has increased 41% over the past four decades, suggesting denser forests are now more vulnerable to wildfire,” said Wang, who joined the U last year and is the principal investigator for the Dynamic Carbon and Ecosystems lab.

The question Wang and his team wanted to answer was how much-rising tree cover loss in California is due to increases in total area burned, how much of the loss is due to increasing wildfire severity, and how much is due to fire moving into new areas with denser forests.

“There’s a pretty shocking map of just how much these fires have expanded into northern California forests,” Wang said. “There’s just a lot more fire in these northern forests than there used to be. Climate change allows severe fires to affect forests that once tolerated milder fires.”

Read the full article by Brian Maffly in @TheU.

A microscopic view of global challenges in chemical separations

Separation Issues


November 15, 2023
Above: Aurora Clark

In 'People vs. the 2nd Law of Thermodynamics' chemist Aurora Clark addresses a microscopic view of global challenges in chemical separations.

An illustration from Aurora Clark's Science at Breakfast lecture on the microscopic view of global challenges in chemical separations.

Our environment is filled with mixtures, whether it is the air we breathe, the water we drink, or the earth we walk on. Often, separating mixtures is key to human health — for example, creating clean water supplies or recycling materials. Understanding how mixtures are separated, and optimizing this process, is a challenging task — and this is exactly what University of Utah Chemistry Professor Aurora Clark is doing.

Clark was the featured presenter November 7th at the College of Science’s Science at Breakfast event staged at the Natural History Museum of Utah. 

“A major issue is that separating materials currently consumes a massive amount of energy,“ Clark explains, citing distillation as an easy example. “As such, chemists try to develop low-energy separation methods to create an environment where such isolation will happen spontaneously.” Achieving spontaneity means that chemists have to leverage the laws of thermodynamics, which include the energy stored in matter (called enthalpy) and entropy (which represents how energy is distributed in matter). Likening the reaction to a rock atop a hill, spontaneity means that that rock will begin rolling without the need of an extra push. 

Such a breakthrough would have monumental effects on the recycling of rare materials. For example, the palladium in mobile phone capacitors is sourced to just a handful of areas, with Russia producing roughly 40% of the world's supply. As geopolitical tensions rise, the incentive to recycle this palladium grows in turn, but such isolation is tricky. It is difficult to develop a separation system that selectively grabs palladium in the complex mixture found in cell phones while ignoring other metals. The question of how to remedy this, by using changes in entropy, is the focus of Clark’s research, which uses the power of the U’s supercomputer to simulate the separations process. Computational geometry and data science play a key role in this pursuit.

By studying the patterns of interactions in complex mixtures, Clark seeks to control the amount of entropy change, which in turn makes it favorable for molecules and metals to selectively move across a separating barrier. Although in its early stages, the idea of using entropy to improve the efficiency of separating mixtures is moving at a rapid pace because of the technological advances of supercomputers and data science. If mastered, the recycling of critical materials like palladium would be significantly simplified, massively reducing energy consumption and optimizing our own self-sufficiency. 

Aurora Clark is a relatively new addition to the U’s faculty, having joined in 2022. She completed a PhD at Indiana University, postdoctoral work at the Los Alamos National Laboratory, and spent almost two decades as a professor of Washington State University’s Department of Chemistry.

By Michael Jacobsen

Science @ Breakfast is a lecture series that features U faculty sharing their latest, cutting-edge research — while enjoying a meal. If you would like to be invited to our next Science @ Breakfast, please consider a donation to the College of Science at https://science.utah.edu/giving.

2023 Distinguished Alumni, Chemistry

2023 Distinguished Alumni, Chemistry


November 2023
Above: Roger Leach, Amy Barrios, Mitch Johnson and Zlatko Bačić

 

Four alumni have been honored as distinguished alumni for 2023 in the Department of Chemistry.

Zlatko Bačić:  Tectonic Science

“When two people limited to different ways of thinking come together, you have a synergy that couldn’t exist otherwise,” says Zlatko Bačić PhD’81, speaking on the vital importance of collaborating across the divisions of science. First-hand experience with this synergy is deeply embedded in his history, from serving as the inaugural director of the Simon Center for Computational Physical Chemistry to studying the quantum dynamics of molecules in Los Alamos

He compares the sciences to tectonic plates, constantly moving in varying directions, uncovering the most exciting discoveries where they collide at the edges. “It’s at those interfaces that the most interesting things happen!” he explains. And just as the Earth’s plates change the landscape, so too can the scientific landscape be terraformed in turn.

Bačić’s journey has not only taken him across the field of theoretical chemistry but across the world, studying everywhere from Croatia to Chicago to Jerusalem to Utah. He found a deep love of the culture and cuisine of New York and Philadelphia, while also delighting in the environment and people in the Four Corners area. He loves the town of Telluride,Colorado but also enjoys visiting his daughter in Seattle, creating a bewildering decision when considering a destination for a far-out retirement. He takes every opportunity he can to travel and experience every area to its fullest potential.

Bačić carries this attitude into his teaching as well. As a current professor at New York University, he has uplifted the lives of countless students and overseen the publication of over 150 papers. “Basic research is at the heart of everything,” he tells his students. “If you think you can guide it somehow, you’re missing the point. It is only unguided research that will illuminate the mysteries you know nothing about.” Championing the value of “unguided research,” he delights in providing opportunities for postdocs, creating an environment for them to prove their worth, opening every door for collaboration to let them show what they can do under optimal circumstances. ~ Michael Jacobsen

Amy Barrios: A world-class education

A Professor of Medicinal Chemistry in the College of Pharmacy, Amy Barrios’ passion for inorganic chemistry began at the University of Utah as a high schooler during a summer chemistry program and propelled her through a career in academia to Professor of Medicinal Chemistry in the U College of Pharmacy.

Barrios BS'95 grew up in Salt Lake City. During her time as an undergrad, she engaged in radiobiology research about Chernobyl victims with radiobiologist Scott Miller, now research professor emeritus at the U's School of Medicine.

Barrios ventured from Salt Lake to the East coast to earn her PhD in chemistry at the Massachusetts Institute of Technology in 2000. There, she dove deeper into bio-inorganic chemistry with Steve Leopard. “My focus was on making molecules that would mimic the activity of metalloenzymes. And I specifically looked at urease, which was actually the first enzyme ever discovered,” says Barrios. “I was making dinuclear nickel complexes that hydrolyzed urea.”

After graduate school, Barrios returned to the west coast and spent some time in California, first in a postdoctoral position at University of California, San Francisco, and later as a professor at University of Southern California.

Finally, Barrios returned home to the U in 2007, this time as a professor. Throughout her education and career, Barrios has visited many institutions and says she’s “...continually impressed by the quality of education that I got here at the U.”

“Our chemistry department, particularly, does an amazing job of educating undergraduates and graduate students, helping us understand all the things we need to know, all the tools we need to go on to be successful in whatever career we go into. So that's something I think is important for our students to recognize: they really get a world class education here.”

Barrios is keen to deliver a message of belonging as she continues in academia. “It's so important, I think, for students to be able to feel like they belong here,” she says. “We need scientists from all backgrounds and with all kinds of different interests and all kinds of different skills. So, I think that's really important also for young people to recognize and for us as faculty and instructors to help them feel that this is a place for them, that we need their talents, and their talents are valued. I hope that they get that message here.”
~ Lauren Wigod


Roger Leach: lifelong learning and agility

Originally from Chicago, Roger Leach Phd'84 first journeyed to the University of Utah for a summer REU program while pursuing his undergraduate degree in chemistry from Augustana College in Illinois. The program allowed him to explore hands-on scientific research for the first time and, captivated by the unique outdoor access and balanced lifestyle he enjoyed in Salt Lake, City Leach returned to the U for graduate school.

Reflecting on his time here, Leach fondly remembers Joel Harris, a distinguished professor whose openly enthusiastic teaching style and love for science still inspire Leach today. “Everything about it was like, the door’s open, walk in, and let’s talk,’ he recalls. “My whole career after Utah, that was sort of my motto you know, ‘What would Joel do?’”

After finishing his graduate degree at the U, Leach began his career working as an analytical chemist in the textile fibers department at DuPont. Though he recalls the initial nerves he felt upon joining the company, Leach acknowledges the U for preparing him well: “[At Dupont], you could meet people who had really moved the bar in terms of technology development that made people’s lives better. So I felt intimidated a little bit, but there was never a time when I felt inferior in terms of my education and preparation.”

Since his days at DuPont, Leach’s career has led him to Viridos, a biotech company focused on algae-based biofuel. For the last few years, Leach has been helping to push the boundaries of renewable energy technology, hoping to create a more sustainable future. Currently a resident of Solana Beach, California, Leach emphasizes the importance of continuing to foster curiosity throughout his career: “The thing that strikes me is how many things we understand today and use today in our daily lives that didn't exist when I was at the University of Utah,” he remarks.

“And the process of keeping yourself relevant as a STEM contributor to society is an exercise in lifelong learning and agility.”
~Julia St. Andre


Mitch Johnson:  reinventing and modernizing formulations

Mitch Johnson first joined the University of Utah as a graduate student in 1994 after finishing his undergraduate degree from Concordia College in Moorhead, Minnesota. He knew he was interested in doing research and was drawn by the U’s outstanding research facilities and small university feel. During graduate school, Johnson worked in Joel Miller’s lab where he gained valuable skills in problem-solving and perseverance. “If I had like four or five ideas, Dr. Miller was very patient and listened to all of them,” Johnson recalls. “I learned that you have to put the work in. You really do have to spend the time and invest yourself completely into solving the problem.” 

For Johnson, chemistry truly runs in the family. His father, a chemical engineer, sparked his interest in the subject at a young age. Later, at the U, he met his wife, who was also pursuing a degree in chemistry. Their shared passion for the field often sparks discussion over dinner, and they even keep a whiteboard nearby for spontaneous problem-solving. Fascinated with creating things and solving problems, synthetic chemistry was the ideal path for Johnson. His career took him to General Plastics, developing specialized thermoplastic materials for use in aerospace engineering and satellite work. He started at the company in 2008 as a product development chemist, with the mission of reinventing and modernizing their formulations. Since then, the company has expanded significantly, and Johnson made his way through the ranks, eventually taking over the company as President and CEO in 2017. 

Looking back on his education, Johnson emphasizes the lasting impact of his time at the U: “The staff and faculty here are fantastic. They really do cultivate very good students and very well-trained professionals.” he says. “A lot of the success I’ve had over my career, it all started here at the U.”
~ Julia St. Andre

 

AI Pioneer Peter Norvig: Frontiers of Science

Frontiers of Science: Peter Norvig


Nov 13, 2024
Above: Peter Norvig. Credit: Todd Anderson

Using current AI large language models to teach the next generation of students

Peter Norvig. Credit: Todd Anderson

“I'm an AI hipster," said Peter Norvig who is known for wearing wildly patterned shirts borne of the Woodstock era. “I was doing it before it was cool, and now is our time.”

The featured speaker at the College of Science’s November 12 Frontiers of Science lecture series, Norvig was referring to the 2024 Nobel Prize in physics awarded to John Hopfield and Geoffrey Hinton for their pioneering work on neural networks, a core part of modern AI systems. Norvig’s address targeted how educators might use current AI large language models (LLMs) to teach the next generation of students.

To explore that question, Norvig, Distinguished Education Fellow at Stanford’s Human-Centered AI Institute as well as a researcher at Google, discussed the evolution of AI to an audience of 200. Norvig reflected back to 2011 when he and Sebastian Thrun pivoted from teaching a traditional AI course at Stanford to an online format where 100,000 worldwide enrolled. The free class featured YouTube videos and what’s called reinforcement learning, using machine learning that helped improve student performance by 10%.

In his lecture, Norvig cited Benjamin Bloom's "two sigma problem” in learning models and emphasized the importance of mastery learning “which means you keep learning something until you get it, rather than saying, 'Well, I got a D on the test, and then tomorrow we're going to start something twice as hard.'” Norvig also emphasized the importance of personalized tutoring.

“Really, the teacher’s role is to make a connection with the student,” Norvig said, “as much as it is to impart this information. That was a main thing we learned in teaching this class.”

These massive open online classes (MOOC) led to gathering massive data sets to help him and his colleague do a better job the next time. In “2024,” he said bringing us up-to-date, “we should be able to do more. And my motto now is we want to have an automated tutor for every learner and an automated teaching assistant for every teacher.”

But the objective for him is always the same: “I want the teachers to be more effective, to be able to do more, be able to connect more with the students, because that personal connection is what's important.”

Language, says Norvig, is humankind’s greatest technology, but “somehow we took this shortcut [in developing AI] of just saying, let's just [take] everything that mankind knows that's been written on the internet and dump it in. That's great. It does a lot of good stuff. There are other cases where we really want better quality, really want to differentiate what's the good stuff and what's not, and that's something we have to work on.”

Norvig acknowledges the challenge of obtaining necessary data to develop accurate student models. Unlike, for example, self-driving automobiles, which uses the data obtained through real-world-miles driven and repeating simulations of miles driven. He cited foundational work by the economist John Horton who is running experiments on computers using “agents” that duplicate a complex set of interactions between each other based on real-world experiments. “I think there's some kind of hope that we could do that kind of thing and have models of students that would tell us something,” he says. “We'd still have to verify that against the real world, but I think this would help a lot, because right now … we've [already] shown we can do 10% better” with student success averages.

There is no doubt that challenges will persist with improving and sufficiently complicating AI-generated content to be more helpful and humane when it comes to educating the next generation. In the context of LLMs, the “open world problem” refers to a scenario where the LLM needs to operate in an environment with incomplete or constantly changing information, requiring it to reason and make decisions without having all the necessary details upfront. It’s much like navigating a real-world situation with unknown variables and potential surprises.

The “open world problem” can’t be solved by traditional pre-programming of coders. There is something in between LLM’s “big empty box”—where you can ask anything you want, go in any direction— and top-down control of a MOOC where everyone ends up attempting to learn in the same way and doing the same thing. “We want the teacher to say, I'm going to guide you on this path, and we're going to get to a body of knowledge, but along the way, we're going to follow diversions that the students are interested in, and every student is going to be a little bit different.” Until the past two years, said Norvig, we never had any technology that could do that, and that “now maybe we do.”

Not only do we need to get AI right, Norvig continued, we need to ask, what does that mean? What is education? Who is it for? When do we do it? Where do we do it?

“The main idea is getting across this general … body of knowledge. But then there's also specific knowledge or skills. … Some of it is about reasoning and judgment that's independent of the knowledge. Some of it is about just getting people motivated … Some of it is about civic and social coherence, being together with other people and working together, mixing our society together.”

It’s a tall order for AI engineers, teachers and students.

For Norvig, the long game is underwritten by the importance of understanding long-term educational goals and balancing AI's benefits with human connections. It’s nothing short of redefining what an education means.

In the 80s, he says, it was about algorithms telling us things; in the “oughts” it was about the showing of big data; and now in the 20s it has turned to the philosophical:  What do we need and what do we want in our real and AI world to prepare students for the future and, once they enter the workforce, to distinguish tasks and jobs. (Changing the mix of tasks, he says, will undoubtedly continue.) What technology do we want to invest in and how will it impact employment?

In his presentation, Norvig engagingly careened from big scale to micro-scale almost in the same sentence, but it’s what the sector is being asked to do at this inflection point in AI technology: mixing the technological with the philosophical, asking hard questions, and thinking inside and without that “open box.”

Fortunately, in the good professor/director of “human-centered AI,” we have a guide and a cheerleader. Not only are his wildly printed shirts easy on the eye, but, the audience was told in the evening’s introduction that he founded the ultimate frisbee club at Berkeley when he was a graduate student.

For Peter Norvig, the self-described “AI hipster,” he’s clearly known for a long while what was cool, “before it was cool.”

 

 

Frontiers of Science is the longest continuously running lecture series at the University of Utah, established in 1967 by U alumnus and physics professor Peter Gibbs. 

by David Pace

 

Exploring the Cosmic Unknown

Exploring the cosmic unknown with the Dark Energy Spectroscopic Instrument


Nov 12, 2024
Above: TA view of DESI’s fully installed focal plane, which features 5,000 automated robotic positioners, each carrying a fiber-optic cable to gather galaxies’ light.

Although the Dark Energy Spectroscopic Instrument sounds like something used at Hogwarts to practice wizardry, it is very much something based in real science.

The Dark Energy Spectroscopic Instrument is working its own magic to probe the fundamental physics that describe the universe and measure the effect of dark energy.

Kyle Dawson, University of Utah professor of physics and astronomy, is part of the Dark Energy Spectroscopic Instrument team and tells us more about this earth-bound, very complex instrument.

Listen to the full podcast posted in KPCW by Katie Mullaly and Lynn Ware Peek.

Celebrating Veterans Day

CElebrating our Veterans


November 11, 2024

Above: Chad Ostrander (left) and Brandon Mowes

In their own words: a geology and geophysics professor and a chemistry alumnus are recognized on 2024 Veterans Day

Chad Ostrander

Chad Ostrander, left top row, a U assistant professor of geology, deployed with the Marines in Operation Enduring Freedom. He served with an Air Force unit pictured here at Al Udeid Air Force Base in Doha, Qatar in 2010.

“I was born in southern Oregon, in a high-desert town just north of the California border called Klamath Falls. My maternal grandpa was the father figure in my life growing up, and he was an Air Force veteran. His duty station at the time of his retirement was Kingsley Field, a small base in that town where he would plant his post-military roots. Military service was always ingrained in me as a sort of rite of passage. Generations before me on maternal and paternal sides had served their country.

I was in eighth grade when I watched the towers fall on Sept. 11. My whole high school career in Klamath Falls I saw men leave for service in Iraq and Afghanistan. Some didn’t come back. College was never an option for me at that time; I grew up really, really poor. Even the local community college was a financial impossibility. The day after I graduated, I moved to southern Arizona to work as a pipe-layer for a sewer- and water-line construction company.

After my job as a pipe-layer and a stint as an old-West reenactor in Tombstone, I moved back to Oregon in the summer of 2007 to work as a dock hand at Crater Lake National Park. It was from here that I decided to join the military. I called the local Marine recruiter during “the surge,” when all military branches were ballooning in size to support the two wars.

I liked that the Marines didn’t promise me anything. You could have gotten tens of thousands of dollars in signing bonuses to join the Air Force, Army or Navy. When I joined the Marines they gave me a free one-way ticket to Marine Corps Recruit Depot, San Diego. I was stationed in Barstow, Calif. for my entire 5-year enlistment. In the summer of 2010, I was offered an Individual Augment billet through Marine Forces Central, to deploy to Al Udeid Air Base in Doha, Qatar. That was very important to me. I would have felt my service was missing a critical component if I didn’t deploy overseas at a time of war.

I cherish my time in the Marines. One of my best life decisions was to join the Corps. But one of my best life decisions was also to exit the Corps. I wanted to use the Post-9/11 GI Bill to do something that seemed impossible just a few years before: go to college. During the final year of my enlistment, I started reading books about science. I started with Carl Sagan’s Cosmos, and eventually made my way, painstakingly, through Charles Darwin’s Origin of Species. I was fascinated with the origin and evolution of life on Earth. In 2012, I enrolled at Arizona State University as an astrobiology major.

The Marines taught me to be comfortable with the uncomfortable. Don’t be adverse to adversity. Nothing is handed to you in this life. The only thing you should ever ask for is an opportunity. If you want something, go get it.”

Chad Ostrander, an assistant professor of geology and geophysics, U.S. Marine Corps veteran

Ostrander served in the U.S. Marine Corps from 2007 to 2012. He reached the rank of sergeant and was deployed to Qatar in 2010. He and his wife live in Salt Lake City with their son and daughter, ages 5 and 8. As an assistant professor at the University of Utah in the Department of Geology & Geophysics, his research examines stable isotopes to shed light on how Earth’s atmosphere and oceans were oxygenated 2.2 billion years ago.

 

Brandon Mowes

Mowes, on the field, receiving his award at the U vs BYU game, Nov. 9, 2024

The 2024 Student Veteran of the Year was awarded to Brandon Mowes at the yearly Veterans Day Commemoration event on Nov. 15.

Mowes utilizes his nine years of United States Navy experience as his catalyst to strive for academic excellence and is someone who exudes qualities of servant leadership.

While in the Navy, Mowes was attached to the Nuclear Power Training Command in Charleston, SC where he endured a fast-paced and challenging nuclear training course consisting of calculus and physics. While not an implicit responsibility of being the class leader, he made it his goal to ensure everyone in his section had the best opportunity to succeed in the program. This goal resulted in Mowes spending substantial time helping other students find ways to better understand the material. His selflessness continued throughout each training program, leading to many students reaching their goals. This act of servant leadership did not go unnoticed.

Following his training, Mowes was offered a position to remain at the training site as an instructor. Jumping at the opportunity, he became an instructor for two years. He instructed approximately 320 sailors in general chemistry and radiological controls, with about 60 being further instructed on in-depth theory and practical application in these controls. The in-depth training portion included standing watch on the systems associated with a working nuclear reactor that was built in 1979 by monitoring, sampling, and correcting chemistry and responding to “incidents” that occur throughout the engine room. Through this experience, he absolutely fell in love with the science behind the reactors and knew this was the field he wanted to pursue.

In 2020, as classes and offices reopened after the pandemic, Brandon discovered the Veterans Support Center, VSC, and inquired about an open work-study position.

“Working at the VSC started to make me feel like I was still contributing to something important by helping all of our military-connected students on campus through support in the VSC and at various events. Seeing the effect that we have on these students at some of their most stressful times is beyond words,” he said.

Brandon graduated with his Bachelor of Science in Chemistry in 2023 with plans to continue at the U for his graduate degree. During the fall semester of that year, he was accepted into the Nuclear Engineering Ph.D. Program as a Research Fellow where he is conducting research on the forensic use of isotopes found in nuclear material in antiproliferation efforts to eventually reduce the security threat that nuclear materials pose to the world, minimizing the effort needed from our armed forces.

As Brandon continues his Ph.D. program, he remains a member of the VSC team as their office assistant. Between helping students in the office, advancing academically, or seeing him during Veterans Week activities behind his “combat camera”, his impact to the military-connected student community and the University of Utah is priceless.