Cameron Soelberg


Cameron Soelberg


Cameron Soelberg, HBS’00

Honors science graduate, Cameron Soelberg, HBS’00, forged an adventurous—and rigorous—path as a student at the U. He continues to travel on a pioneering trail to this day.

Soelberg recently climbed to the summit of the highest point in Utah—Kings Peak at 13,528 feet—and has also lived and worked in Colorado, Illinois, New Hampshire, and New York.

“I think my personal history is a good example that your education and career don't need to necessarily move in a straight line from point A to point B, because your goals might change as you gain experience and that could launch you on a completely new path from what you had in mind originally,” said Soelberg.

When Soelberg first enrolled at the U in 1994, his intention was to pursue a Ph.D. and become a college professor.

After he completed his honors degrees in mathematics and physics, he stayed on campus to complete a Master’s Degree in Mathematics. While in graduate school, he was supported with a teaching assistantship in the Math Department and taught one or two courses each semester.

"After finishing the Master’s Degree, I felt like I needed some time away from school and decided to pursue an opportunity with a startup company in Colorado Springs. There I was involved in prototyping projects for the U.S. Special Forces, which was fascinating work,” said Soelberg.

In 2006, Soelberg took a job as a systems engineer with Lockheed Martin in Salt Lake City, developing biometric tagging and identification algorithms. “I enjoyed engineering and appreciated the quick learning curve and exposure to cutting-edge technology, but I wanted to broaden my horizons in the direction of business management, so after a year at Lockheed, I chose to leave Utah again to pursue an MBA at Dartmouth College,” he said.

While at Dartmouth, Soelberg became interested in investment banking. He completed an internship with Deutsche Bank in New York in the summer of 2008, between his first and second years of business school.

“The timing couldn’t have been worse as that was the start of the global financial crisis but witnessing it firsthand was an invaluable experience, and I was fortunate to receive a full-time offer to join the firm in Chicago after graduation,” said Soelberg. (He earned an MBA at the Tuck School of Business at Dartmouth College in 2009.)

The first few years following the financial crisis were tough for investment banking, as regulatory changes impacted the industry, but Soelberg worked hard and was promoted to vice president and then to director and managing director. He spent a total of nine years at Deutsche Bank. In 2018, he joined the Global Industries Group at UBS Investment Bank and now splits his time between Chicago and Salt Lake City.

“My current position involves a lot of numbers and a keen understanding of the capital markets and valuation,” said Soelberg. “It’s not sophisticated or complex in the way that algebraic topology or particle physics may be, but it does require critical thinking and a high degree of accuracy. The most important contribution my University of Utah education has made is the rigorous way I was taught to analyze and attack problems. The scientific method (and mathematical proof, similarly) is a disciplined framework for progressing from a hypothesis or question to a well-reasoned and logical conclusion. I use this every day in my job, and I’m grateful for how well my learning at the U prepared me to succeed.”

Soelberg recalls many people and experiences from his undergraduate years on campus.

“Lab work in chemistry and physics especially stands out, mostly because I was so impatient that I could never do the experiments quite right, but I had good lab partners who kept me on track,” he said.

“In the Math Department, Jerry Davey really had an impact on me as a student. I took a couple of undergraduate courses from him and helped with an accelerated calculus series one summer as a TA,” said Soelberg. “He was a kind person and a great teacher. He also lived an interesting life that spanned multiple dimensions in mathematics, the military, engineering, and private industry. I’ve always thought of his career path as a role model for my own.”

“Within the Physics Department, I’d be remiss if I didn’t recognize Charlie Jui for all that he taught me in the pre-professional physics program as a freshman. I wasn’t always the most present or attentive student, but his love of physics and wry sense of humor has stuck with me, and I still enjoy seeing him on campus,” said Soelberg.

Soelberg also remembers studying in the Fletcher building (Physics) and the Cowles building (Math) after it was renovated. He was active in many organizations on campus, including a fraternity, and he held offices in student government and the Alumni Association.

“I think there are a couple of lessons I’ve kept in mind that could prove useful for current students. The first is that there will always be challenges, obstacles, and setbacks to overcome, no matter how or when you start out in life. Adversity creates opportunity. Being adaptable is one of the most important keys to success (and happiness),” said Soelberg.

“Second, I would say that no matter how difficult things may become, you are not alone in the struggle. There are many other people, both historically and in different parts of society today, who have faced grave difficulties and found ways to rise above their circumstances. Take comfort and inspiration in that realization and use it as a model for yourself,” he said.

Soelberg is already planning his next adventure—to run the Chicago marathon. “There’s always another mountain to climb,” said Soelberg. “Life’s challenges, and rewards, can be found anew each day.”

A solid educational foundation in mathematics and physics, and the Honors College, is an exceptional “base camp” from which to operate.

Connor, Annabelle, Hayden, Charlotte, Cameron, and partner, Amanda.

Soelberg has four children: Hayden (19), Annabelle (16), Connor (13), and Charlotte (10). Hayden is a freshman at the U, studying computer science. He’s enrolled in the Honors College and lives on campus at Kahlert Village.

 

Are you a Science Alumni? Connect with us today!


More Alumni


Sea Ice Science

The Science of Sea Ice


A sheet of floating Arctic or Antarctic ice probably isn’t the setting in which you’d expect to find a mathematician. But that’s exactly where distinguished professor Ken Golden trains students and carries out experiments, as explained in a video introduction to Golden’s Frontiers of Science lecture, hosted by the College of Science and held on Feb. 18.

“It’s one thing to sort of sit in your office and develop theorems and theories and models about as complex a system as sea ice,” Golden says. “It exhibits all kinds of fascinating phenomena and behavior that you wouldn’t necessarily expect or think is important until you actually get down there and see it in action.”

Watch the full video introduction, produced by University Marketing & Communications, below or find the video here. Golden talks about his experiences in the Arctic and Antarctica and about what he and his students have learned from bringing the principles of mathematics into some of Earth’s most remote and most vulnerable environments.

Golden studies how sea ice forms and melts using mathematical models. He’s logged 18 trips to the Arctic and Antarctic, and is a Fellow of the Explorers Club. He is also a Fellow of the Society for Industrial and Applied Mathematics, and an Inaugural Fellow of the American Mathematical Society.

The Frontiers of Science lecture series was established in 1967 by University of Utah alumnus and Physics Professor Peter Gibbs. Today, Frontiers of Science is the longest continuously running lecture series at the University of Utah. The 2020-2021 Frontiers of Science lectures, featuring University of Utah faculty, are online only.

In Golden’s lecture, he discusses his research, his Arctic and Antarctic adventures and how mathematics is currently playing an important role in addressing these fundamental issues and will likely play an even greater role in the future. Watch the full video of the presentation below, or find the video here.

Ken Golden’s Recent Research

 

by Paul Gabrielsen - first published in @THEU

 

Vignesh Iyer

Vignesh Iyer


How did you become interested in math?
I’ve always gravitated toward STEM subjects even in elementary school. In college, I was exposed to various subjects but a common language each subject used was math. I’m a curious student and hungry to consume as much knowledge as possible. Math is a universal language that allows me to communicate with those in different fields and tells me how things work. Math has allowed me to explore other subjects and influences the way I interact with problems—from social sciences to applied sciences and engineering.

What kind of internship did you have while at the U? How did you get it?  What did you like about it?
At the beginning of 2020, I started interning for the Pharmacotherapy Outcomes Research Center (PORC) at the University of Utah College of Pharmacy. I applied using the College of Science internship page. I loved interning with the PORC because it allowed me to engage in computational mathematics, work in pharmacology, and interact with different data science and statistical analysis techniques. The team I worked with was performing a correlational study between medication types and bile-duct cancers. I was able to work on the entire computing and mathematics aspect of the study and learn some cool chemistry along the way. My favorite part of the internship was learning how to access databases and interpret the information using data analysis.

You finished your bachelor’s degree and are now in graduate school at the University of California, Irvine. What are you studying?
I entered UC Irvine last fall to begin my graduate studies in mathematics. Graduate school is a whole new challenge but it’s such an enjoyable challenge! My coursework has really taught me to think in new ways, and I’m able to explore new areas of mathematics. At the moment, my favorite class is abstract algebra because it’s a whole new area of math I’ve never been exposed to. I think the online learning part of graduate school has presented learning curves but they’re interesting learning curves.

I’d like to continue my graduate studies in mathematics and get a Ph.D., whether that’s returning to the U. or staying here at home in Southern California.

Is there an area of research that interests you in math? What do you like about it?
I’m interested in applied and computational mathematics. More specifically, I’m interested in applying computational mathematics to data science and machine learning. Applied and computational mathematics explores modeling and/or simulating systems using computers and various mathematical subjects, such as numerical methods, inverse problems, etc. What I like about applied and computational mathematics is that it allows me to be an all-around researcher and engage and contribute to different fields.

Long-term career plans?
After my graduate studies are completed, I’d like to pursue a career in robotics, focusing primarily on research and development in machine learning and artificial intelligence.

 - first published by the Department of Mathematics

Kyle Kazemini

Kyle Kazemini


How did you become interested in math?
I had an exceptional math teacher in high school. He had a great sense of humor and genuinely cared about all of his students. He also loved math and it was apparent in his teaching. His lessons were both fun and interesting. My enjoyment prompted me to take calculus and decide to study math further. My interest in math has only continued to grow.

How did you get your internship?
My math advisor, Angie Gardiner, told me about the College of Science Internship Program, and I applied for some positions. I was hired as a sports science intern for University of Utah Athletics. The people I worked with were great, and they all made me feel like part of the team.

My first project was to transform ForceDecks data. ForceDecks is a system for analyzing an athlete’s performance and to make assessments. The data from ForceDecks has a unique format that’s difficult to use in statistical programming languages like R and Python. My job was to develop a tool to fix this issue. I used Excel and VBA (Visual Basic for Applications) to create an automated tool for transforming the data into a user-friendly format.

My second project was to analyze the ForceDecks data. Now that it had a better format, I used R to analyze the data. The purpose of the analysis was to detect athlete asymmetries and possible injury risks. I generated statistics, tables, and plots. These projects made use of both my statistical and programming skills. I enjoyed this internship because I love applying math and computer science in interesting and impactful ways. Because of this internship, I have since become interested in quantitative medicine.

You’re involved in the Directed Reading Program. What is it? 
The Directed Reading Program is a mentoring program between graduate and undergraduate students, who work together on a reading project in mathematics. Any student can sign up for the program, regardless of their level in math. I heard about it through Math Department announcements, and I’m so happy I did. My graduate student mentor is awesome! We’ve read about differential equations and basic mathematical biology. Currently, we’re reading about partial differential equations.

What year are you?  
I’m a junior and plan on graduating in the spring of 2023. I’m taking an extra year since I’m doing a double major with computer science. My interest in computer science started when I took some CS courses as part of my math major. After learning some of the basics of CS, I began to wonder what was out there. Since then, I’ve become excited about theoretical computer science, as well as image processing and computer vision. Studying computer science has made me better at math and vice versa. Although math is the subject I love most, I think studying CS gives me a different perspective on mathematical problems. I also love learning about computing for its own sake.

What about career plans? 
I’m planning on doing a Ph.D. in math, but I’m still narrowing down my research interests. I’m deciding between pure and applied math because I enjoy things like applied mathematical biology, but I also just love math problems on their own. In addition to math bio, I’m interested in partial differential equations. I’m excited to learn about the theory behind PDEs, including real analysis, functional analysis, and Sobolev spaces.

Hobbies or interests outside of math?
I started studying Muay Thai (Thai boxing) when I was 13. Muay Thai is like kickboxing, except with elbows and knees. I was taking classes at a gym for about three years, but now I do it just for fun/exercise at home on a punching bag. I think martial arts are awesome for learning things like discipline and self-confidence.

I also love film—my favorite film is Good Will Hunting, which is pretty typical for a math nerd! I love it because it has a math genius, a great love story, and it’s about triumphing over difficult challenges. I enjoy most film genres—anything from romance to horror to documentaries.

I’m new to snowboarding, and I really like it. My favorite resort (for now) is Brighton. Currently, my favorite video game is CSGO(Counter-Strike: Global Offensive). I don’t play a lot of games because school keeps me busy, but in the past I’ve loved playing Skyrim, Call of Duty, and Halo.

I’ve wanted to build my own computer for years, and I finally did it for the first time a few months ago. I use it for school, work, and for intensive tasks that my laptop just can’t handle. Building it made me really happy!

 - first published by the Department of Mathematics

Priyam Patel

Priyam Patel


Visualizing the Topology of Surfaces

Imagine a surface that looks like a hollow doughnut. The “skin” of the doughnut has no thickness and is made of stretchy, flexible material. “Some of my favorite mathematical problems deal with objects like this–surfaces and curves or loops on such surfaces,” said Priyam Patel, assistant professor of mathematics, who joined the Math Department in 2019. “I like how artistic and creative my work feels, and it’s also very tangible since I can draw pictures representing different parts of a problem I’m working on.”

Patel works in geometry and topology. The two areas differ in that geometry focuses on rigid objects where there is a notion of distance, while topological objects are much more fluid. Patel likes studying a geometrical or topological object extensively so that she’s able to get to know the space, how it behaves, and what sort of phenomena it exhibits. In her research, Patel’s goals are to study and understand curves on surfaces, symmetries of surfaces, and objects called hyperbolic manifolds and their finite covering spaces. Topology and geometry are used in a variety of fields, including data analysis, neuroscience, and facial recognition technology. Patel’s research doesn’t focus on these applications directly since she works in pure mathematics.

Challenges as a Minority

Patel became fascinated with mathematics in high school while learning to do proofs. She was fortunate to have excellent high school math teachers, who encouraged her to consider majoring in math in college. “When I was an undergraduate at New York University (NYU), I had a female professor for multivariable calculus who spent a lot of time with me in office hours and gave me challenging problems to work on,” said Patel. “She was very encouraging and had a huge impact on me.”

As a woman of color, Patel often felt out of place in many of her classes at NYU. Later, she was one of a handful of women accepted into a Ph.D. program at Rutgers University. Unfortunately, these experiences led to strong feelings of “impostor syndrome” for her as a graduate student. Eventually, she overcame them and learned to celebrate her successes, focusing on the joy that mathematics brings to her life. She has also worked to find a community of mathematicians to help support her through the tough times. “I’ve received a lot of encouragement from friends and mentors both in and outside of my math community,” she said. “I feel especially fortunate to have connected with strong women mentors in recent years.”

Mentors and Outside Interests

Feng Luo, professor of mathematics at Rutgers, was Patel’s Ph.D. advisor, and he played an active role in the early years of her math career. “Talking about math with Dr. Luo is always a positive experience, and his encouragement has been pivotal to my success as a mathematician,” said Patel. Another mentor is Alan Reid, chair and professor of the Department of Mathematics at Rice University. Patel notes that there are many aspects to being a mathematician outside of math itself, and these mentors have helped her navigate her career and offered support, encouragement, and advice.

Patel loves mathematics but makes time for other things in life. She enjoys rock climbing, yoga, dancing, and painting. Music is also a huge part of her life, and she sings and plays the guitar.

Future Research

Patel is currently working on problems concerning groups of symmetries of certain surfaces. Specifically, she has been studying the mapping class groups of infinite-type surfaces, which is a new and quickly growing field of topology. “It’s quite exciting to be at the forefront of it. I would like to tackle some of the biggest open problems in this area in the next few years, such as producing a Nielsen-Thurston type classification for infinite-type surfaces,” she said. She is also interested in the work of Ian Agol, professor of mathematics at Berkeley, who won a Breakthrough Prize in 2012 for solving an open problem in low-dimensional topology. Patel would like to build on Agol’s work in proving a quantitative version of his results. Other areas she’d like to explore are the combinatorics of 3-manifolds and the theory of translation surfaces.

 

by Michele Swaner

 

COVID Connections

Creating a Virtual Symposium


Tanya Vickers

Rising to the Challenge

Science is about preparing the next generation of innovators, explorers, and connoisseurs of curiosity. For the last 29 years the College of Science ACCESS program has been the “first step” on this journey of discovery. The ACCESS program runs from June to August and is open only to first-year students freshmen and transfers).

A cornerstone of the ACCESS experience is the opportunity for the student cohort to share their work with faculty and peers during a research poster symposium. The symposium is a powerful learning experience that mirrors professional science conferences and a career in the field, and plays a key role in the program.

When COVID-19 hit the U.S., the longstanding tradition of the Spring Research Symposium was in jeopardy. As the director of ACCESS , I was driven to find a way to continue the capstone symposium, and provide talented first-year student scientists the opportunity to showcase their research, in spite of social distancing.

With just six weeks until the event we decided to design, build, and launch a novel virtual research symposium platform. The sudden shift and short time-frame presented a real challenge, but it was also an opportunity to pursue and explore innovative approaches to current standards that, if not for CO VID-19, would have been stagnant.

It’s been six months since the Virtual Symposium, and we are still surprised by its success. The merits and results of the virtual platform challenged the notion that in-person is best. The in-person symposium normally saw about 200 guests. In contrast, the virtual symposium reeled in nearly 6,000-page views in three days and 260 guests attended the live zoom presentations.

Thinking Differently

COVID-19 upended and reshaped our everyday lives and challenged everyone to find new approaches to routine activities and novel fixes for nascent problems, much like scientists do on a regular basis.

When the on-campus student research experience was cut short in March, it didn’t mark the end of learning for the 2019-2020 ACCESS cohort. Research faculty agreed to continue mentoring remotely, which included helping the students report their research in a scientific poster they would present virtually. Unfortunately, the technology for a virtual research poster presentation did not exist.

That’s when I began the process of envisioning and creating the Virtual Symposium platform, as it’s now known. I started with identifying the critical elements of an in-person research symposium and considering how to transpose them to a virtual model. My experience teaching and using Canvas (used to deliver course content) shaped the content, and with the collaboration and support of Micah Murdock, Associate Director of Teaching and Learning Technologists (TLT ), a novel virtual research symposium was fully realized.

Embracing Technology

The platform was a lofty goal that required three defining features: a webpage for students to introduce their project, a message board for peers, guests, and mentors to pose questions, and a live Zoom presentation with question and answer.

Each student had a personal webpage that included their research poster, a 3-minute video summary of their research project, and a short personal bio. These elements provided guests with an introduction and interactions analogous to an in-person symposium.

In-person symposia can feel rushed, but the virtual platform offered the advantage of providing guests more time to preview projects on their own, before using one, or both, forum tools—the student scientist’s discussion board, or the 30-minute Zoom live session scheduled on the last day—to ask questions or comment.

Building For the Future

Throughout this process, we wanted to build a tool with the future, as well as other disciplines and applications, in mind. We are proud to announce that the platform has already seen use for the School of Biological Sciences Virtual Retreat, ACCESS Alumni Career Panel, and a number of campus-wide projects. Most recently, the Virtual Symposium was chosen to serve as the cornerstone of the new College of Science high school outreach platform SCIENCE NO W—engaging students, presenters, and elite scientists from across the U.S. and around the world.

As a species and as scientists, we always look forward to new ideas and what can be done. In our darkest hours, we find a space for new forms of unity and growth, and can challenge ourselves to create and expand. CO VID has been undeniably difficult, but the development of new platforms and technologies, like the Virtual Research Symposium, show that sometimes, when we are forced to make changes to long held traditions, the outcome goes beyond finding an equivalent, making what we thought was “best” even better.

Special thanks to Dean Peter Trapa, ACCESS Program Manager, Samantha Shaw, and to the ACCESS students and mentors for believing in the vision of a Virtual Research Symposium.

For more information on the Virtual Symposium platform contact: tanya.vickers@utah.edu.

 

by Tanya Vickers

 

Karl Schwede

Fellow of the American Mathematical Society

Professor Karl Schwede in the U’s Department of Mathematics has been named a member of the 2021 Class of Fellows of the American Mathematical Society (AMS). The Society recognizes members who have made outstanding contributions to the creation, exposition, advancement, communication and utilization of mathematics. Schwede joins 14 other professors in the department who were previously named fellows by the AMS.

“It’s an honor to be named as a fellow of the American Mathematical Society, and I’m grateful for the recognition of my peers in the profession,” said Schwede.

Schwede received his undergraduate degree in mathematics from Whitman College and a Ph.D. in mathematics from the University of Washington. Math was originally third on his list of interests in college, but as he took more advanced math courses, his focus changed to mathematics.

Schwede does basic research in mathematics, studying algebra, geometry and particularly singularities. Much of his work is in the setting of modular arithmetic (also known as clock arithmetic), the same setting as much of our modern communication systems. For example, 5 hours after 10 is 3 or 5+10 = 3. “In this area, I have primarily studied singularities of geometric shapes by algebraic means,” said Schwede. Recently, he has begun working in mixed characteristic, which connects the positive characteristic of clock arithmetic with classical (5+10 = 15) geometric worlds.

He joined the U’s Math Department in 2014 as an associate professor and became a professor in 2018. Last spring, Schwede received a Simons Fellows Award in Mathematics from the Simons Foundation.

 

by Michelle Swaner, originally published in @theU

Women in Mathematics

Women in Mathematics


Last spring, the Math Department’s student chapter of the Association for Women in Mathematics (AWM) planned a conference, with speakers, mini courses, breakout sessions, and professional development panels. About 60 participants were expected. Unfortunately, when the pandemic hit in March, everything changed, and the conference was canceled.

Despite the setback, the chapter still moved forward and will host a series of online activities and communications for attendees. In recognition of these remarkable efforts, the chapter was recently selected as the winner of the 2020 AWM Student Chapter Award for Scientific Excellence. Christel Hohenegger, associate professor of mathematics, serves as faculty advisor for the chapter.

"We are very thankful and excited to have won this award and receive national recognition,” said Claire Plunkett, vice president of the chapter for 2020-2021. “This is a national award from the AWM, and we are one of more than a hundred student chapters, so it’s a great honor to be chosen. We feel the award reflects how our chapter's activities have continued to grow and gain momentum over the past several years, and we’re excited to continue to sponsor events and expand our activities.”

For the academic year, the chapter has invited four speakers and all talks will be held on Zoom. Confirmed speakers include Nilima Nigam, professor of mathematics at Simon Fraser University; Kristin Lauter, principal researcher and partner research manager for the Cryptography and Privacy Research group at Microsoft Research; and Christine Berkesch, associate professor of mathematics at the University of Minnesota. The annual conference has been rescheduled for June 2021.

In addition, the chapter will continue to host joint monthly lunch discussions with the SIAM (Society for Industrial and Applied Mathematics) student chapter; a professor panel in which faculty research is shared with students; joint LaTeX (a software system for document preparation) workshops held with the SIAM student chapter; a screening of a documentary called Picture aScientist, a discussion co-hosted with other women in STEM groups; and bi-weekly informal social meetings. For more information about the U’s AWM chapter, visit http://www.math.utah.edu/awmchapter/.

 - first published by the Department of Mathematics

2020 Research Scholar

Delaney Mosier

Delaney Mosier receives top College of Science award.

Delaney Mosier, a graduating senior in mathematics, has been awarded the 2020 College of Science Research Scholar Award for her cutting-edge work in the area of sea ice concentration, using partial differential equation models.

“I am humbled to receive this award,” said Delaney. “The College of Science is teeming with groundbreaking research, so it’s an overwhelming honor to be considered one of the top researchers in the College. I’m proud to be a representative of the amazing research going on in the field of mathematics.”

Delaney is also proud to receive the award as a woman. “I strive to be a positive role model for girls and women in STEM. I hope that by earning this award, I can inspire other women to consider working on mathematics research.”

In his letter of support for Delaney’s nomination, Distinguished Professor Ken Golden, who has served as her supervisor and mentor, discussed her research abilities, natural leadership skills, and mathematical prowess, indicating that Delaney is one of the most talented and advanced students he has seen in his 30+ years of mentoring.

Super Student

The College of Science Research Scholar Award, established in 2004, honors the College’s most outstanding senior undergraduate researcher. The Research Scholar must be a graduating undergraduate major of the College of Science, achieve excellence in science research, have definite plans to attend graduate school in a science/math field, and be dedicated to a career in science/math research.

Studying the Behavior of Sea Ice

Delaney studies patterns in the behavior of sea ice in polar regions. She’s interested in how physical processes affect these patterns on a short-term basis and how climate change can affect them in the long-term.

The primary goal of her research with Dr. Golden is to understand better how and why sea ice is changing over time. Considered relatively low order, their model allows them to study intimately the details of the sea ice pack, which can provide insights that might not yet be apparent to the climate science community. Her work tries to answer one of the most important research questions of the modern age: Why is polar sea ice melting so rapidly and will it ever recover?

She has always been passionate about the environment and finds the project exciting because it incorporates mathematics along with studying climate. “My project is very dynamic,” she noted. “Each time I meet with Dr. Golden, we discuss something new to incorporate into our model or seek a new way to understand it. It’s thrilling to be a part of such unique and innovative work.”

Utah Strong

She became seriously interested in math because of her 7th grade algebra teacher. “Mrs. Hein fostered an exploratory environment—I collaborated with my peers and was often challenged to explore the world of mathematics for myself,” she said. “I couldn’t get enough of it. To this day, math remains the one activity that I can completely lose myself in. Math challenges my mind in exhilarating and motivating ways.”

Mentors at the U

Delaney credits Dr. Golden with helping her pursue a variety of opportunities that have furthered her career as a mathematician. She also has praise for Dr. Courtenay Strong, associate professor of atmospheric sciences, and Dr. Jingyi Zhu, associate professor of mathematics, who have served as mentors and helped guide her research.

“My friend and roommate, Katelyn Queen, has been a wonderful mentor and inspiration to me throughout my journey,” said Delaney. “She is always willing to give me advice and support me in my endeavors. I have watched her excel in her first year of graduate school, and that has inspired me in moving forward.” She also thanks fellow students and her parents for their love and support. “My parents are simply the best,” said Delaney.

Her favorite teacher at the U is Dr. Karl Schwede, professor of mathematics. “I had Dr. Schwede for several classes and learned so much,” she said. “He has high standards for his students, which motivated me and helped me to retain the material. He is also supportive and helpful.”

When she isn’t studying or doing research, she loves to dance and listen to music. She was a competitive Irish dancer from ages 11 – 17. She is also an avid reader, especially during the summer.

The Future

Goodbye Salt Lake City

Delaney will begin her Ph.D. studies in applied mathematics this fall. She hasn’t yet decided if she will work in industry, continue with climate research, or become a professor. “Whatever I decide to do, my goal is to use mathematics to have an impact on the world,” she said.

 

by Michele Swaner