Distinguished Service

Distinguished Service


Pearl Sandick

Pearl Sandick receives Distinguished Service Award.

Pearl Sandick, Associate Professor of Physics and Astronomy and Associate Dean of Faculty Affairs for the College of Science, has received the Linda K. Amos Award for Distinguished Service to Women. The award recognizes Sandick’s contributions to improving the educational and working environment for women at the University of Utah. Amos was the founding chair of the Presidential Commission on the Status of Women, was a professor of nursing, and served for many years as Dean of the College of Nursing and as Associate Vice President for Health Sciences. Throughout her career, Amos was the champion for improving the status and experience of women on campus.

“This is a great honor. I’m privileged to work with amazing students and colleagues who understand the value of a supportive community,” said Sandick. “I am really proud of what we’ve accomplished so far, and I’m excited to start to see the impact of some more recent projects.”

Sandick is a theoretical particle physicist, studying some of the largest and smallest things in the universe, including dark matter, the mysterious stuff that gravitationally binds galaxies and clusters of galaxies together.

Upon her arrival as an assistant professor in 2011, Sandick founded the U’s first affinity group for women in physics and astronomy. For the last two decades, the national percentage of women physicists at the undergraduate level has hovered around 20%. The percentage at more advanced career stages has slowly risen to that level, thanks in part to supportive programming designed to increase retention. The goal of the affinity group within the department is to foster a sense of community and provide opportunities for informal mentoring and the exchange of information, ideas, and resources. The group has also been active in outreach and recruiting. As of fall 2021, the group is now known as PASSAGE, a more inclusive group focused on gender equity in physics and astronomy.

Within the department and in the College of Science, Sandick has improved a number of processes, including writing an effective practices document for faculty hires, based in large part on research related to equitable and inclusive recruitment practices and application review. As Associate Dean, she worked with the College of Science Equity, Diversity, and Inclusion Committee (which she currently chairs) to create college-wide faculty hiring guidelines, which were adopted in 2020. She was also instrumental in several other structural and programmatic initiatives to create a supportive environment in the department, such as the development of a faculty mentoring program and the establishment of “ombuds liaisons” to connect department members with institutional resources.

Through her national service related to diversity and inclusion, Sandick has gained a variety of expertise that she has brought back to the campus community. For example, she has given workshops in the department, the college, and across campus on communication and negotiation, implicit bias, conflict management, and mentorship.

Here are comments from women in the Department of Physics & Astronomy, who have participated with Dr. Sandick in activities sponsored by PASSAGE:

“Being part of PASSAGE has allowed us to connect with others who share similar experiences in the department. It has also helped us connect with people, both within the university community and at other institutions, who have served as role models and mentors.” –Tessa McNamee and Callie Clontz, undergraduates

"PASSAGE became a lifeline during the pandemic and continues to be so. It helps equip members with the tools that they need in various aspects of academia. Professor Sandick makes it her mission to guide us, especially in a time of crisis. I am personally thankful to her and to all of the group members.” –Dr. Ayşegül Tümer, Postdoctoral Research Associate

In addition to her research, Sandick is passionate about teaching, mentoring, and making science accessible and exciting for everyone. She has been recognized for her teaching and mentoring work, with a 2016 University of Utah Early Career Teaching Award and a 2020 University of Utah Distinguished Mentor Award. In 2020, she also was named a U Presidential Scholar. As discussed earlier, women are still widely underrepresented in physics, and Sandick is actively involved in organizations that support recruitment, retention, and advancement of women physicists. She has served on the American Physical Society (APS) Committee on the Status of Women in Physics and as the chair of the National Organizing Committee for the APS Conferences for Undergraduate Women in Physics. She is currently chair of the APS Four Corners Section, which serves approximately 1,800 members from the region.

- by Michele Swaner, first published at physics.utah.edu

>> BACK <<

 

The Frontier of Physics

The Frontier of Physics


The Standard Model of particle physics is the theory that explains how the most elementary particles interact with each other and combine to form composite objects, like protons and neutrons. Developed over the course of many decades, what we know as the Standard Model today was formulated nearly half a century ago and remains a focus of study for particle physicists. But by itself, the Standard Model fails to provide an explanation for many important phenomena, such as the existence of the dark matter in the universe.

The Standard Model

Today, physicists and researchers are on the frontier in the search for physics beyond the Standard Model, using connections between theoretical particle physics, cosmology, and astrophysics to help us understand the universe.

Pearl Sandick, Associate Professor of Physics and Astronomy and Associate Dean of Faculty Affairs for the College of Science, is on that frontier. As a theoretical particle physicist, she studies some of the largest and smallest things in the universe, including dark matter, which is the mysterious stuff that gravitationally binds galaxies and clusters of galaxies together.

While regular matter makes up about one-sixth of the total matter in the universe, dark matter makes up five-sixths. There are compelling arguments that dark matter might actually be a new type of elementary particle. Electrons are an example of an elementary particle—they are the most fundamental building blocks of their type and are not composed of other particles. Other examples of elementary particles include quarks, neutrinos, and photons.

In August 2019, Sandick and her colleagues hosted a workshop entitled “The Search for New Physics—Leaving No Stone Unturned,” which brought together dozens of particle physicists, astrophysicists, and cosmologists from around the world to discuss recent advances and big ideas. “It was such a vibrant environment; I think it helped us all broaden our perspectives and learn new things. Though there’s a lot going on in the meantime, we’re already excited about the prospect of hosting a second “No Stone Unturned” workshop in the new Science Building.”

Recently, Sandick has turned her attention to another cosmological phenomenon—black holes—tackling the question of how their existence affects our understanding of dark matter and other physics beyond the Standard Model.

“Some of this new research makes use of the cosmic microwave background (CMB), which is leftover radiation from the Big Bang that we can observe today,” said Sandick.

“CMB measurements can help us understand the structure and composition of the universe, including how much is made of dark matter. The CMB also can provide hints about what other particles or objects existed in the early universe.”

Before the CMB was created, the universe was very hot and very dense. In this environment, the densest places would have collapsed to become black holes. The black holes that formed in this way are called primordial black holes (PBHs), to differentiate them from black holes that form much later when stars reach the end of their lives. Heavy enough PBHs would still be around today and could make up some or all of the dark matter, providing an alternative to the idea that dark matter is a new particle. Lighter PBHs probably are not an explanation for dark matter, but they would have had an important interplay with dark matter and other new particles.

Sandick, along with a U of U postdoctoral associate, Barmak Shams Es Haghi, have been looking into the many impacts of a population of light PBHs in the early universe. Recently, they’ve completed the first precision study of some spinning PBHs in the early universe, finding that current CMB measurements from the Planck satellite (an observatory operated by the European Space Agency) and future measurements with the CMB Stage 4 experiment at the South Pole and in the Chilean desert are sensitive to many important PBH scenarios. The Planck data already point to some more and less likely possibilities, while CMB Stage 4 will be an important step forward in understanding the life and death of small black holes.

In addition to her research, Sandick is passionate about teaching, mentoring, and making science accessible and interesting. She has been recognized for her teaching and mentoring work, with a 2016 University of Utah Early Career Teaching Award and a 2020 University of Utah Distinguished Mentor Award. In 2020, she also was named a U Presidential Scholar. Women are still widely underrepresented in physics, and Sandick is actively involved in organizations that support recruitment, retention, and advancement of women physicists. She has served on the American Physical Society (APS) Committee on the Status of Women in Physics and as the Chair of the National Organizing Committee for the APS Conferences for Undergraduate Women in Physics. She is currently chair of the APS Four Corners Section, which serves approximately 1,800 members from the region. In 2011, she founded a group to support women in the Department of Physics and Astronomy and continues to serve as their faculty advisor.

She earned a Ph.D. from the University of Minnesota in 2008 and was a postdoctoral fellow at Nobel Laureate Steven Weinberg’s group (Weinberg Theory Group) at the University of Texas at Austin before moving to the University of Utah in 2011.

- by Michele Swaner, first published at physics.utah.edu

>> BACK <<

 

Presidential Scholar

Presidential Scholar


Pearl Sandick

Pearl Sandick one of Four U Presidential Scholars named.

Four faculty members—a pharmacologist, a political scientist, an engineer, and a physicist—have been named Presidential Scholars at the University of Utah.

The award recognizes the extraordinary academic accomplishments and promise of mid-career faculty, providing them with financial support to advance their teaching and research work.

The 2020 recipients are: Marco Bortolato, associate professor in the Department of Pharmacology and Toxicology in the College of Pharmacy; Jim Curry, associate professor and director of graduate studies for the Department of Political Science in the College of Social and Behavioral Science; Masood Parvania, associate professor and associate chair in the Department of Electrical and Computer Engineering in the College of Engineering; and Pearl Sandick, associate professor in the Department of Physics and Astronomy and associate dean of the College of Science.

“These scholars represent the exceptional research and scholarship of mid-career faculty at the University of Utah,” said Dan Reed, senior vice president for Academic Affairs. “They each are outstanding scholars and teachers in their fields of specialty. Their scholarship is what makes the U such a vibrant and exciting intellectual environment.”

Presidential scholars are selected each year, and the recipients receive $10,000 in annual funding for three years. The program is made possible by a generous donor who is interested in fostering the success of mid-career faculty.

Pearl Sandick

Pearl Sandick, a theoretical particle physicist and associate professor in the Department of Physics and Astronomy, studies explanations for dark matter in the universe—one of the most important puzzles in modern physics.“I love that my work involves thinking of new explanations for dark matter, checking that they’re viable given everything we know from past experiments and observations, and proposing new ways to better understand what dark matter is,” she said. “I find this type of creative work and problem solving to be really fun on a day-to-day basis, and the bigger picture — what we’ve learned about the Universe and how it came to look the way it does — is just awe-inspiring.”

She has given a TEDx talk and been interviewed on National Public Radio’s Science Friday. Sandick is passionate about teaching, mentoring students and making science accessible and interesting to non-scientists. In addition to the Presidential Scholar award, she has received the U’s Early Career Teaching Award and Distinguished Mentor Award.

“One of the great joys of working at the U is our commitment to engaging students at all levels in research,” Sandick said, “and I’ve been thrilled to work with amazing undergraduate and graduate students.”

by Rebecca Walsh first published in @theU

Pearl Sandick: Associate Dean

The College of Science is pleased to announce the appointment of Professor Pearl Sandick from the Department of Physics & Astronomy as the new Associate Dean of Faculty Affairs in the College of Science, effective July 1, 2019.

Pearl earned her PhD in Physics from the University of Minnesota and served as a postdoctoral fellow at the Weinberg Theory Group at the University of Texas at Austin before joining the University of Utah in 2011. Pearl’s research interests are in particle physics beyond the Standard Model, including possible explanations for the dark matter in the universe. Pearl is a recipient of the prestigious University of Utah Early Career Teaching Award. She recently served as Associate Chair in the Department of Physics & Astronomy and as a member of the University of Utah Academic Senate.

We are delighted that Pearl has agreed to take on the important role of Associate Dean of Faculty Affairs as the College moves forward on many new academic fronts. Please join us in providing your support to Pearl as she begins this new position.