Accessibility Menu
Press ctrl + / to access this menu.

Our DNA 2020

OUR DNA Magazine


OUR DNA, the School of Biological Sciences magazine, is published twice a year. If you do not currently receive our newsletter, please contact us at development@biology.utah.edu to be added to our mailing list.

MORE PUBLICATIONS


 

Air Currents 2024

The 2024 edition of Air Currents, magazine for the U Department of Atmospheric Sciences

Read More
Synthesis 2024

SRI inaugural cohort, the U in biotech and stories from throughout the College of Science

Read More
Aftermath 2024

The official magazine of the U Department of Mathematics.

Read More
Spectrum 2023

The official magazine of the U Department of Physics & Astronomy.

Read More
Common Ground 2023

The official magazine of the U Department of Mining Engineering.

Read More
Down to Earth 2023

The official magazine of the U Department of Geology & Geophysics.

Read More
Our DNA 2023

The official magazine of the School of Biological Sciences at the University of Utah.

Read More
Catalyst 2023

The official magazine of the Department of Chemistry at the University of Utah.

Read More
Synthesis 2023

Wilkes Center, Applied Science Project and stories from throughout the merged College.

Read More
Aftermath Summer 2023

Anna Tang Fulbright Scholar, Tommaso de Fernex new chair, Goldwater Scholars, and more.

Read More
Air Currents 2023

Celebrating 75 Years, The Great Salt Lake, Alumni Profiles, and more.

Read More
Spectrum 2022

Explosive neutron stars, Utah meteor, fellows of APS, and more.

Read More
Aftermath 2022

Arctic adventures, moiré magic, Christopher Hacon, and more.

Read More
Our DNA 2022

Chan Yul Yoo, Sarmishta Diraviam Kannan, and more.

Read More
Spectrum 2022

Black Holes, Student Awards, Research Awards, LGBT+ physicists, and more.

Read More
Aftermath 2022

Student awards, Faculty Awards, Fellowships, and more.

Read More
Our DNA 2022

Erik Jorgensen, Mark Nielsen, alumni George Seifert, new faculty, and more.

Read More
Notebook 2022

Student stories, NAS members, alumni George Seifert, and Convocation 2022.

Read More
Discover 2021

Biology, Chemistry, Math, and Physics Research, SRI Update, New Construction.

Read More
Our DNA 2021

Multi-disciplinary research, graduate student success, and more.

Read More
Aftermath 2021

Sound waves, student awards, distinguished alumni, convocation, and more.

Read More
Spectrum 2021

New science building, faculty awards, distinguished alumni, and more.

Read More
Notebook 2021

Student awards, distinguished alumni, convocation, and more.

Read More
Spectrum 2021

Student awards, distinguished alumni, convocation, and more.

Read More
Aftermath 2021

Sound waves, student awards, distinguished alumni, convocation, and more.

Read More
Our DNA 2021

Plant pandemics, birdsong, retiring faculty, and more.

Read More
Discover 2020

Biology, Chemistry, Math, and Physics Research, Overcoming Covid, Lab Safety.

Read More
AfterMath 2020

50 Years of Math, Sea Ice, and Faculty and Staff recognition.

Read More
Spectrum 2020

3D maps of the Universe, Perovskite Photovoltaics, and Dynamic Structure in HIV.

Read More
Notebook 2020

Convocation, Alumni, Student Success, and Rapid Response Research.

Read More
Our DNA 2020

Stories on Fruit Flies, Forest Futures and Student Success.

Read More
Catalyst 2020

Transition to Virtual, 2020 Convocation, Graduate Spotlights, and Awards.

Read More
Spectrum 2020

Nuclear Medicine, PER Programs, and NSF grant for Quantum Idea Incubator.

Read More
Discover 2019

Science Research Initiative, College Rankings, Commutative Algebra, and more.

Read More
Spectrum 2019

Nuclear Medicine, PER Programs, and NSF grant for Quantum Idea Incubator.

Read More
Notebook 2019

The New Faces of Utah Science, Churchill Scholars, and Convocation 2019.

Read More
Catalyst 2019

Endowed Chairs of Chemistry, Curie Club, and alumnus: Victor Cee.

Read More
Our DNA 2019

Ants of the World, CRISPR Scissors, and Alumni Profile - Nikhil Bhayani.

Read More
Catalyst 2019

Methane-Eating Bacteria, Distinguished Alumni, Student and Alumni profiles.

Read More
Spectrum 2019

Featured: Molecular Motors, Churchill Scholar, Dark Matter, and Black Holes.

Read More
Our DNA 2019

Featured: The Startup Life, Monica Gandhi, Genomic Conflicts, and alumna Jeanne Novak.

Read More
AfterMath 2018

Featured: A Love for Puzzles, Math & Neuroscience, Number Theory, and AMS Fellows.

Read More
Discover 2018

The 2018 Research Report for the College of Science.

Read More
Spectrum 2018

Featured: Dark Matter, Spintronics, Gamma Rays and Improving Physics Teaching.

Read More
Catalyst 2018

Featured: Ming Hammond, Jack & Peg Simons Endowed Professors, Martha Hughes Cannon.

Read More

Michelle Williams

Michelle Williams

Michelle’s story sounds like it must have been deliberately calculated and executed. How else does someone go from Jamaica at an all-girls boarding school to college in New York City to graduate school at the University of Utah to Global Group President of Arkema, a billion-dollar subsidiary of Altuglas International? Turns out, Michelle had zero plans whatsoever to lead an international company along her career path. Instead, she thought she might like teaching. As she says, “Plan A never works out, and sometimes it’s Plan H or Plan G that finally works!”

She came to the University of Utah after breezing through college so much so that it was all a blur, and she found herself in Dr. David Grant’s research group at the age of 19. “I had no idea what I was getting into.” She, like most 19-year-olds, was looking for adventure and eagerly said goodbye to her teary-eyed mother at the airport. Michelle was checking off her adulting list: she rented an apartment--her ​own​ place; figured out her schedule; supported herself on her tiny teaching and research stipend; and she made her way, “I mucked my way through it.”

Michelle is emphatic that “this is where I grew up.” Only second to her decision to have children, coming to the University of Utah Chemistry Department was the best decision she ever made. Despite her overwhelm when she began her graduate research, she was quick and willing to ask for help, and she’s continued to do so throughout her entire career. “The reality is that I have always found that there are people who will help you. There are always people who see something in you.”

As she was completing her PhD research and dissertation defense, Michelle began casually interviewing with companies while she waited for her experiments to finish. She turned down a job offer from Dow Chemical though the interview was one of the most impactful conversations she would have about her career. The interviewer advised her, “young lady,” at which Michelle rolled her eyes, “you’re going to have opportunities and opportunities, and you need to find a company that has the right personality to match your personality.” She turned down the Dow Chemical position, and, instead, accepted a job at Rohm and Haas.

The job at Rohm and Haas was a continuation of the sense of community she had come to love at the University of Utah. It was a small enough, family-owned company where she could build relationships, and the focus was on learning, training, development and growing people. From a young age, Michelle has developed and followed her core values through every step of the way.

 
by Anne Vivienne
 

Productivity Resources

Productivity resources


Stay safe. stay healthy. Stay connected.

The Covid-19 pandemic has taken a toll across university campuses. Below are some tips to help manage stress and focus on staying productive while working remotely.

  1. Take care of yourself. 
  2. Learn a new skill or technique: Invest time in broadening your research focus.
  3. Revisit a long forgotten project: Do you have publishable results that have been on the shelf?
  4. Promote your work online: Update your website or FAR.
  5. Create a graphical abstract of your research: Use this on your website; share it with your departments’ development team.
  6. Apply for funding: Check out the Faculty Funding Opportunities emails from the CoS.  
  7. Think about your career plans: Write a plan for yourself.
  8. Conduct informational interviews: Meet on Zoom to brainstorm about new research directions.
  9. Be nice to your fellow humans: Check in with your research group and colleagues.  Offer encouragement and celebrate accomplishments.
  10. Do fun stuff: Fun projects, fun brainstorming, add fun to your personal life (while staying safe, of course)!

*Adapted from AAAS: Advice for working from home during COVID-19 (Bodewits, 2020).


  • Three questions to ask yourself each day:
    • What choices am I making about the things I have control over?  If you’re feeling overwhelmed, consider what choices you can make about the information you receive and whether that information is serving you well.
    • What do I need, physically, intellectually, emotionally?  Do this at the beginning of the day. Use this self-dialog to build your schedule.
    • What is good right now?  Identifying positive things helps control fear and panic, allowing you to better focus on the tasks at hand. 
  • NCFDD Resources: COVID-19
  • Core Curriculum  Note that for each webinar, you can navigate to the “Resources” tab, where you will find a summary and discussion questions.  Some webinars also feature templates and examples for further reading.

*Adapted from the National Center for Faculty Development and Diversity (NCFDD). The UofU is an NCFDD institutional member, so access to these resources is free.  To create your account, choose “Become a member” in the upper right corner of the page, and choose our institution from the drop down menu.  Then “Activate your membership” to create your own account using your email address.

 

 

Women in Mathematics

Women in Mathematics


Last spring, the Math Department’s student chapter of the Association for Women in Mathematics (AWM) planned a conference, with speakers, mini courses, breakout sessions, and professional development panels. About 60 participants were expected. Unfortunately, when the pandemic hit in March, everything changed, and the conference was canceled.

Despite the setback, the chapter still moved forward and will host a series of online activities and communications for attendees. In recognition of these remarkable efforts, the chapter was recently selected as the winner of the 2020 AWM Student Chapter Award for Scientific Excellence. Christel Hohenegger, associate professor of mathematics, serves as faculty advisor for the chapter.

"We are very thankful and excited to have won this award and receive national recognition,” said Claire Plunkett, vice president of the chapter for 2020-2021. “This is a national award from the AWM, and we are one of more than a hundred student chapters, so it’s a great honor to be chosen. We feel the award reflects how our chapter's activities have continued to grow and gain momentum over the past several years, and we’re excited to continue to sponsor events and expand our activities.”

For the academic year, the chapter has invited four speakers and all talks will be held on Zoom. Confirmed speakers include Nilima Nigam, professor of mathematics at Simon Fraser University; Kristin Lauter, principal researcher and partner research manager for the Cryptography and Privacy Research group at Microsoft Research; and Christine Berkesch, associate professor of mathematics at the University of Minnesota. The annual conference has been rescheduled for June 2021.

In addition, the chapter will continue to host joint monthly lunch discussions with the SIAM (Society for Industrial and Applied Mathematics) student chapter; a professor panel in which faculty research is shared with students; joint LaTeX (a software system for document preparation) workshops held with the SIAM student chapter; a screening of a documentary called Picture aScientist, a discussion co-hosted with other women in STEM groups; and bi-weekly informal social meetings. For more information about the U’s AWM chapter, visit http://www.math.utah.edu/awmchapter/.

 - first published by the Department of Mathematics

Course Registration Drop-In Hours

Course Registration Drop-In Hours


If you would like help with your course registration, stop by our drop-in hours and receive one-on-one support from one of our student ambassadors. During one of our drop-in sessions (schedule below), join the lobby below and an ambassador will assist you with your registration.

 

 

Drop-In Schedule


All times listed in MST

Transfer Orientation #4 / First Year Orientation #2: January 11-15

Wednesday, January 13

8:00 - 10:00 AM

2:00 - 4:00 PM

Thursday, January 14

10:00 AM - 12:00 PM

3:00 - 5:00 PM

Friday, January 15

9:00 - 11:00 AM

1:00 - 3:00 PM

 

If none of these timeslots work for you and you need help with your course registration, please email office@science.utah.edu.

Spectrum 2020

the Spectrum - Fall 2020


The Spectrum, the Department of Physics & Astronomy newsletter, is published twice a year. If you do not currently receive our newsletter, please contact Michele Swaner at swaner@science.utah.edu to be added to our mailing list.

More Publications


Air Currents 2024

The 2024 edition of Air Currents, magazine for the U Department of Atmospheric Sciences

Read More
Synthesis 2024

SRI inaugural cohort, the U in biotech and stories from throughout the College of Science

Read More
Aftermath 2024

The official magazine of the U Department of Mathematics.

Read More
Spectrum 2023

The official magazine of the U Department of Physics & Astronomy.

Read More
Common Ground 2023

The official magazine of the U Department of Mining Engineering.

Read More
Down to Earth 2023

The official magazine of the U Department of Geology & Geophysics.

Read More
Our DNA 2023

The official magazine of the School of Biological Sciences at the University of Utah.

Read More
Catalyst 2023

The official magazine of the Department of Chemistry at the University of Utah.

Read More
Synthesis 2023

Wilkes Center, Applied Science Project and stories from throughout the merged College.

Read More
Aftermath Summer 2023

Anna Tang Fulbright Scholar, Tommaso de Fernex new chair, Goldwater Scholars, and more.

Read More
Air Currents 2023

Celebrating 75 Years, The Great Salt Lake, Alumni Profiles, and more.

Read More
Spectrum 2022

Explosive neutron stars, Utah meteor, fellows of APS, and more.

Read More
Aftermath 2022

Arctic adventures, moiré magic, Christopher Hacon, and more.

Read More
Our DNA 2022

Chan Yul Yoo, Sarmishta Diraviam Kannan, and more.

Read More
Spectrum 2022

Black Holes, Student Awards, Research Awards, LGBT+ physicists, and more.

Read More
Aftermath 2022

Student awards, Faculty Awards, Fellowships, and more.

Read More
Our DNA 2022

Erik Jorgensen, Mark Nielsen, alumni George Seifert, new faculty, and more.

Read More
Notebook 2022

Student stories, NAS members, alumni George Seifert, and Convocation 2022.

Read More
Discover 2021

Biology, Chemistry, Math, and Physics Research, SRI Update, New Construction.

Read More
Our DNA 2021

Multi-disciplinary research, graduate student success, and more.

Read More
Aftermath 2021

Sound waves, student awards, distinguished alumni, convocation, and more.

Read More
Spectrum 2021

New science building, faculty awards, distinguished alumni, and more.

Read More
Notebook 2021

Student awards, distinguished alumni, convocation, and more.

Read More
Spectrum 2021

Student awards, distinguished alumni, convocation, and more.

Read More
Aftermath 2021

Sound waves, student awards, distinguished alumni, convocation, and more.

Read More
Our DNA 2021

Plant pandemics, birdsong, retiring faculty, and more.

Read More
Discover 2020

Biology, Chemistry, Math, and Physics Research, Overcoming Covid, Lab Safety.

Read More
AfterMath 2020

50 Years of Math, Sea Ice, and Faculty and Staff recognition.

Read More
Our DNA 2020

E-birders, retiring faculty, remote learning, and more.

Read More
Notebook 2020

Convocation, Alumni, Student Success, and Rapid Response Research.

Read More
Our DNA 2020

Stories on Fruit Flies, Forest Futures and Student Success.

Read More
Catalyst 2020

Transition to Virtual, 2020 Convocation, Graduate Spotlights, and Awards.

Read More
Spectrum 2020

Nuclear Medicine, PER Programs, and NSF grant for Quantum Idea Incubator.

Read More
Discover 2019

Science Research Initiative, College Rankings, Commutative Algebra, and more.

Read More
Spectrum 2019

Nuclear Medicine, PER Programs, and NSF grant for Quantum Idea Incubator.

Read More
Notebook 2019

The New Faces of Utah Science, Churchill Scholars, and Convocation 2019.

Read More
Catalyst 2019

Endowed Chairs of Chemistry, Curie Club, and alumnus: Victor Cee.

Read More
Our DNA 2019

Ants of the World, CRISPR Scissors, and Alumni Profile - Nikhil Bhayani.

Read More
Catalyst 2019

Methane-Eating Bacteria, Distinguished Alumni, Student and Alumni profiles.

Read More
Spectrum 2019

Featured: Molecular Motors, Churchill Scholar, Dark Matter, and Black Holes.

Read More
Our DNA 2019

Featured: The Startup Life, Monica Gandhi, Genomic Conflicts, and alumna Jeanne Novak.

Read More
AfterMath 2018

Featured: A Love for Puzzles, Math & Neuroscience, Number Theory, and AMS Fellows.

Read More
Discover 2018

The 2018 Research Report for the College of Science.

Read More
Spectrum 2018

Featured: Dark Matter, Spintronics, Gamma Rays and Improving Physics Teaching.

Read More
Catalyst 2018

Featured: Ming Hammond, Jack & Peg Simons Endowed Professors, Martha Hughes Cannon.

Read More

Next-Gen Astronomy

 

Gail Zasowski

Next-gen astronomical survey makes its first observations.

The Sloan Digital Sky Survey’s fifth generation collected its very first observations of the cosmos at 1:47 a.m. on October 24, 2020. As the world’s first all-sky time-domain spectroscopic survey, SDSS-V will provide groundbreaking insight into the formation and evolution of galaxies—like our own Milky Way—and of the supermassive black holes that lurk at their centers.

Funded primarily by member institutions, along with grants from the Alfred P. Sloan Foundation, the U.S. National Science Foundation, and the Heising-Simons Foundation, SDSS-V will focus on three primary areas of investigation, each exploring different aspects of the cosmos using different spectroscopic tools. Together these three project pillars—called “Mappers”—will observe more than six million objects in the sky, and monitor changes in more than a million of those objects over time.

The survey’s Local Volume Mapper will enhance our understanding of galaxy formation and evolution by probing the interactions between the stars that make up galaxies and the interstellar gas and dust that is dispersed between them. The Milky Way Mapper will reveal the physics of stars in our Milky Way, the diverse architectures of its star and planetary systems, and the chemical enrichment of our galaxy since the early universe. The Black Hole Mapper will measure masses and growth over cosmic time of the supermassive black holes that reside in the hearts of galaxies, and of the smaller black holes left behind when stars die.

“We are thrilled to start taking the first data for two of our three Mappers,” added SDSS-V spokesperson Gail Zasowski, an assistant professor in the University of Utah’s Department of Physics & Astronomy. “These early observations are already important for a wide range of science goals. Even these first targets provide data for studies ranging from mapping the inner regions of supermassive black holes and searching for exotic multiple-black hole systems, to studying nearby stars and their dead cores, to tracing the chemistry of potential planet-hosting stars across the Milky Way.”

A sampling of data from the first SDSS-V observations. Center: The telescope’s field-of-view, with the full Moon shown for scale. SDSS-V simultaneously observes 500 targets at a time within a circle of this size. Left: the optical-light spectrum of a quasar, a supermassive black hole at the center of a distant galaxy, which is surrounded by a disk of hot, glowing gas. The purple blob is an SDSS image of the light from this disk, the width of a human hair as seen from about 21 meters (63 feet) away. Right: The image and spectrum of a white dwarf –the left-behind core of a low-mass star (like the Sun) after the end of its life.

The newly-launched SDSS-V will continue the path-breaking tradition set by the survey’s previous generations, with a focus on the ever-changing night sky and the physical processes that drive these changes, from flickers and flares of supermassive black holes to the back-and-forth shifts of stars being orbited by distant worlds. SDSS-V will provide the spectroscopic backbone needed to achieve the full science potential of satellites like NASA’s TESS, ESA’s Gaia, and the latest all-sky X-ray mission, eROSITA.

As an international consortium, SDSS has always relied heavily on phone and digital communication. But adapting to exclusively virtual communication tactics since the beginning of the COVID-19 pandemic was a challenge, along with tracking global supply chains and laboratory availability at various university partners as they shifted in and out of lockdown during the final ramp-up to the survey’s start. Particularly inspiring were the project’s expert observing staff, who worked in even-greater-than-usual isolation to shut down, and then reopen, the survey’s mountain-top observatories.

“In a year when humanity has been challenged across the globe, I am so proud of the worldwide SDSS team for demonstrating—every day—the very best of human creativity, ingenuity, improvisation, and resilience.” said SDSS-V director Juna Kollmeier, of the Carnegie Observatories. “It has been a challenging period for SDSS and the world, but I’m happy to report that the pandemic may have slowed us, but it has not stopped us.”

Anil Seth


The University of Utah will actually operate as the data reduction center for SDSS-V, supported by the U’s Center for High Performance Computing. Joel Brownstein, a research associate professor in the Department of Physics & Astronomy, is the head of data management and archiving for SDSS-V. “As we see the first observations streaming to Utah from the mountain observatories, we are just starting to grasp the amazing potential of this ambitious data set. We are fully and proudly committed to making our results more accessible to the larger community by introducing new tools that enable a dynamic, user-driven experience.”

SDSS-V will operate out of both Apache Point Observatory in New Mexico, home of the survey’s original 2.5-meter telescope, and Carnegie’s Las Campanas Observatory in Chile, where it uses the 2.5-meter du Pont telescope.

SDSS-V’s first observations were taken in New Mexico with existing SDSS instruments, in a necessary change of plans due to the pandemic. As laboratories and workshops around the world navigate safe reopening, SDSS-V’s own suite of new innovative hardware is on the horizon—in particular, systems of automated robots to aim the fiber optic cables used to collect the light from the night sky. These robots will be installed at both observatories over the next year. New spectrographs and telescopes are also being constructed to enable the Local Volume Mapper observations.

Dr. Anil Seth, the University of Utah’s representative on the Advisory Council that oversees SDSS’s operations, highlighted the impact of the project’s open data policies and worldwide collaboration. “SDSS’s 20-year legacy has touched nearly every astronomer in the world by this point. It has become the go-to reference for astronomy textbooks on galaxies, made the most precise measurements of how our Universe is expanding, and showed us how powerful shared data can be. I look forward to see what new results SDSS V will reveal!”

For more information, please see the SDSS-V’s website at www.sdss5.org.

Adapted from a release by the Carnegie Observatories. Also published in @theU

Doon Gibbs

Doon Gibbs is currently the Director of Brookhaven National Laboratory in Upton, New York. Brookhaven is a multi-program U.S. Department of Energy laboratory with nearly 3,000 employees, more than 4,000 facility users each year, and an annual budget of about $600 million.

Brookhaven Lab’s largest facilities include the National Synchrotron Light Source II, the Relativistic Heavy Ion Collider, and the Center for Functional Nanomaterials – some of the finest research instruments in the world.

Doon was born in Illinois, where his father was a post doc, but grew up in Salt Lake City near the University of Utah. His father, Peter Gibbs, was a prominent physics professor at the U, and his mother, Miriam, was a school teacher at Wasatch Elementary in the Avenues district. The family home was just off First Avenue and Virginia Street, only a few blocks from campus.

Doon and his younger siblings, Victoria and Nicholas, attended East High School. Upon graduation, Doon moved to Portland to attend Reed College, a private liberal arts school. After two years, he returned to Utah and enrolled at the U. He worked on campus as a writer and reporter with The Daily Utah Chronicle, the University’s student newspaper.

“I tried just about everything else except physics in school,” says Gibbs. “But, there was one physics course that sounded intriguing. It was Gale Dick’s entry-level class, ‘Physics for Poets.’ I signed up for summer semester 1974. Despite my best efforts to not do exactly what my dad did, I found that physics was totally compelling.”

Additional physics and math classes soon followed. He changed his major to Mathematics in 1975, added a Physics major in 1976 and graduated with both degrees in 1977. He was a member of the Phi Beta Kappa and Phi Kappa Phi honor societies.

Although his father was a well known professor of physics at the U, and chairman of the department from 1967-1976, Doon didn’t take a single class from his dad.

“Well, I got physics lessons from my dad every day, but it was usually at home on the front porch or in the kitchen,” says Gibbs. “I didn’t get any college credit.” He chuckles.

Doon pursued a Master’s degree in physics at the University of Illinois, Urbana-Champaign, ironically, the same school at which his father had been a post doc. He stayed at Illinois to complete a doctorate degree in condensed matter physics in 1982 – the same field as his dad, although Doon is an experimenter and his father is a theorist. During this time, his research interests focused on the utilization of synchrotron radiation to perform spectroscopy of surfaces.

After graduate school, Doon found an entry-level job as an assistant physicist. The place was Brookhaven National Laboratory. The year was 1983.

At Brookhaven, he specialized in condensed matter physics and X-ray magnetic scattering and was promoted to a senior physicist in 2000.

In 2003, Gibbs was honored with the Advanced Photon Source Arthur H. Compton Award “for pioneering theoretical and experimental work in resonant X-ray magnetic scattering, which has led to many important applications in condensed matter physics.”

He was named Deputy Laboratory Director for Science and Technology in 2007.

By 2010, Gibbs’ management experiences at Brookhaven included the positions of Group Leader of X-ray Scattering, Associate and Deputy Chair of Physics, Head of Condensed Matter Physics, Interim Director of the Center for Functional Nanomaterials, and Associate Laboratory Director for Basic Energy Sciences.

“A science background is a great preparation for an increasingly complex world. The ability to analyze and creatively solve complicated problems is a wonderful advantage,” says Gibbs.

Gibbs was instrumental in overseeing the design and construction of Brookhaven’s Center for Functional Nanomaterials, and has played a significant role in advancing other major Lab projects including the National Synchrotron Light Source II and the Interdisciplinary Science Building. He has also overseen the growth of Brookhaven’s basic energy sciences programs in chemistry, materials science, nanoscience, and condensed matter physics.

“Brookhaven is moving in new and exciting directions,” says Gibbs. “In the next decade, we hope to expand our nuclear and particle physics efforts to build a next-generation electron-ion collider, among other projects. In general, national labs develop and use science and technology to address critical issues such as energy security, national and nuclear security and environmental clean-up.”

Doon met his wife, Teri Barbero, on a blind date in New York City. “We went to a cool Indian restaurant in midtown,” recalls Gibbs. “We were inseparable after that, and were married about a year later.”

The couple lives in Setauket, New York. They have two sons, Theo, 20, and Alex, 18. The family enjoys skiing, soccer, and backyard barbecues.

Doon visits Utah on occasion to visit friends and family. His father is always ready with a physics lesson for the youngster.