Jim Kaschmitter

Armed with optimism and a degree in physics, Jim Kaschmitter BS’72, showed up for his first day on the job at Anaconda Copper’s Research Facility in Salt Lake City only to be told by his supervisor to go home because Chile had just nationalized its copper mines. Undeterred, Kaschmitter found a job with OmniLift Corporation, a Salt Lake City startup that was developing a new type of conveyor system in the Mechanical Engineering Department at the U. While working at the U, Kaschmitter bought one of the first Hewlett Packard HP25 calculators and became fascinated by computers. This fascination has led to a long and successful career in Silicon Valley.

Silicon Valley Beckons
In 1976, Kaschmitter earned a master’s degree in electrical engineering from Stanford University while working for Professor Robert Byer (the William R. Kenan, Jr. Professor of Applied Physics at Stanford’s Applied Physics Department), helping to build laser spectroscopy equipment. He began a Ph.D. program in Applied Physics but dropped out to take a job at Stanford Telecommunications. Inc. (STI) in Mountain View, Calif. STI was founded by the late James Spilker, Jr., who hired Kaschmitter as an early employee. Spilker was one of the inventors of GPS. While at STI, Kaschmitter designed and built a Viterbi convolutional codec (with an encoder and decoder) for satellite communications.

From there Kaschmitter turned his attention to microprocessors, which were then rapidly advancing in Silicon Valley. He co-developed an automated wafer dicing saw using an Imsai 8080 he and his partner purchased from the first Byte Shop in Mountain View, Calif. Interestingly, this shop had the first Apple computer for sale at the time—an unpackaged PCB with a keyboard. After several interim electronics design jobs, Kaschmitter was recruited to Elxsi Corporation, a San Jose startup founded by ex-Digital Equipment Corporation engineers, where he designed the disk subsystem and worked on the IEEE floating point processor and high-speed bus. He became interested in integrated circuit packaging, which led him to apply for a position at Lawrence Livermore National Laboratory (LLNL)

At LLNL, Kaschmitter undertook several projects, including laser pantography for integrated circuit packaging, image processing, and redundant computing for orbital satellites, solar electric aircraft, and energy storage. In 1987, he co-founded nChip Corporation to commercialize hybrid wafer-scale integration; this technology was later sold to Flextronics. In 1989, Kaschmitter assumed responsibility for developing a low-cost power system for President Reagan’s Star Wars satellite system, but he was frustrated by the expensive, heavy batteries then used in satellites, so he began to investigate lithium-ion, or Li-ion batteries, which were still in the research and development phase. He co-founded PolyStor Corporation in 1993, with a grant from President Clinton’s Technology Reinvestment Project program, and his company subsequently established the first commercial Li-ion manufacturing facility in the U.S. In 1997, he spun off PowerStor Corporation from PolyStor to commercialize a carbon aerogel supercapacitor he’d co-invented at LLNL. PowerStor was subsequently acquired by Cooper Bussmann, Inc., which manufactures 1-2 million supercapacitors per month.

Today, Kaschmitter is CEO of SpectraPower (which he founded in 2002) in Livermore, Calif in order to apply PolyStor’s high-energy Nickel-Cobalt technology for high-altitude electric drones. Initially, the market wasn’t yet ready for the technology, so Kaschmitter subsequently founded UltraCell Corporation to work on reformed methanol micro-fuel cell technology. UltraCell’s fuel cells are deployed today with the U.S. military. In the meantime, Kaschmitter has continued with SpectraPower and now focuses his efforts there on supporting users and developers of Li-based battery technologies.

Memories of the U
“The U is a great school with strong technical departments and academics, especially in the area of physics. The department always had an international outlook but with a supportive small-school atmosphere,” said Kaschmitter. “The students and professors were friendly, approachable, and focused on science. Physics has truly provided the foundation for my career.” He also appreciated the advice provided by Professor Orest Symko, whose insights helped Kaschmitter set personal goals and priorities.

During his undergraduate years, one of his favorite jobs was running the undergraduate Physics Lab, where he maintained and explained basic physics experiments to students. “There have been some stressful times later in my career when I’ve wished I could have that job back!” quipped Kaschmitter.

His advice for undergraduate students is twofold: set career goals and be prepared to work hard to achieve them. As Edison famously said, “Genius is 1% inspiration and 99% perspiration.”

“I’d also encourage students to stay “fact-based” in whatever profession they choose,” said Kaschmitter. “Don’t let the zeitgeist or trendy popular ideas control your technical thinking. Weigh different opinions, but trust in facts and data. Learn to separate hype from reality.”

Like many of us, Kaschmitter is facing uncertainties during the pandemic but believes the quarantine can provide us with opportunities for independent work. For example, Sir Isaac Newton invented calculus, optics, etc., while he was quarantined in the English countryside during the Great Plague. “We probably can’t all do that, but I’ve found the quarantine allows me to get a lot of work done without the usual day-to-day distractions,” said Kaschmitter.

When he isn’t working, he makes time for his other love—flying. He has a long-time interest in aviation and first did a solo flight at age 16 at the Salt Lake International Airport. “My instructor was Bill Edde, and I sometimes flew with his older brother, who was a former WWI Spad fighter pilot. Later in my career, while at LLNL, I developed lightweight wing-mounted solar panels for the Pathfinder and Helios solar electric aircraft, which AeroVironment subsequently used to set altitude records,” said Kaschmitter. He currently owns, maintains, and flies an experimental Velocity XL-RG: N568Y.

In summing up his career, Kaschmitter notes his favorite adage: “If you love your work, you’ll never work a day in your life,” and that’s certainly how I feel about my career." He admits physics is not the easiest path academically, but studying it gives students a fundamental understanding of science and technology that will give them an edge over the competition. “I’ve dealt with many venture capitalists in Silicon Valley and worldwide throughout my career,” he said. “Having a technical background is a real asset—the ones without it are at a disadvantage in today’s technology-reliant world.”

 

Presidential Scholar

Presidential Scholar


Pearl Sandick

Pearl Sandick one of Four U Presidential Scholars named.

Four faculty members—a pharmacologist, a political scientist, an engineer, and a physicist—have been named Presidential Scholars at the University of Utah.

The award recognizes the extraordinary academic accomplishments and promise of mid-career faculty, providing them with financial support to advance their teaching and research work.

The 2020 recipients are: Marco Bortolato, associate professor in the Department of Pharmacology and Toxicology in the College of Pharmacy; Jim Curry, associate professor and director of graduate studies for the Department of Political Science in the College of Social and Behavioral Science; Masood Parvania, associate professor and associate chair in the Department of Electrical and Computer Engineering in the College of Engineering; and Pearl Sandick, associate professor in the Department of Physics and Astronomy and associate dean of the College of Science.

“These scholars represent the exceptional research and scholarship of mid-career faculty at the University of Utah,” said Dan Reed, senior vice president for Academic Affairs. “They each are outstanding scholars and teachers in their fields of specialty. Their scholarship is what makes the U such a vibrant and exciting intellectual environment.”

Presidential scholars are selected each year, and the recipients receive $10,000 in annual funding for three years. The program is made possible by a generous donor who is interested in fostering the success of mid-career faculty.

Pearl Sandick

Pearl Sandick, a theoretical particle physicist and associate professor in the Department of Physics and Astronomy, studies explanations for dark matter in the universe—one of the most important puzzles in modern physics.“I love that my work involves thinking of new explanations for dark matter, checking that they’re viable given everything we know from past experiments and observations, and proposing new ways to better understand what dark matter is,” she said. “I find this type of creative work and problem solving to be really fun on a day-to-day basis, and the bigger picture — what we’ve learned about the Universe and how it came to look the way it does — is just awe-inspiring.”

She has given a TEDx talk and been interviewed on National Public Radio’s Science Friday. Sandick is passionate about teaching, mentoring students and making science accessible and interesting to non-scientists. In addition to the Presidential Scholar award, she has received the U’s Early Career Teaching Award and Distinguished Mentor Award.

“One of the great joys of working at the U is our commitment to engaging students at all levels in research,” Sandick said, “and I’ve been thrilled to work with amazing undergraduate and graduate students.”

by Rebecca Walsh first published in @theU

Rapid Response Research

Rapid Response Research


1.08.2020

Researchers identify a new coronavirus in Hubei province, China.

1
1.28.2020

Saveez Saffarian flies to Barcelona, Spain, to present research on HIV at the New Concepts in Virology conference

2
1.30.2020

The W.H.O. declares a global health emergency with 9,800 infected worldwide.

3
3.05.2020

Saffarian presents a colloquium on SARS-CoV2 virus to the science faculty.

4
3.06.2020

NSF announces RAPID research grants for COVID-19.

5
3.06.2020

Vershinin and Saffarian submit preliminary NSF proposal.

6
3.07.2020

Preliminary NSF proposal is approved.

7
3.09.2020

NSF RAPID Research Grant approved.

8
5.21.2020

Research paper on CoV2 virus reaction to the environment submitted.

9

Saveez Saffarian

On January 30, 2020, Saveez Saffarian traveled to Barcelona, Spain, to present HIV research at the New Concepts in Virology conference. “There was a lot of speculation about SARS-CoV2 in that meeting. Although, at the time, it was far less than it would become,” said Saffarian.

Michael Vershinin

Upon returning to Utah, Saffarian was asked to present a colloquium on the SARS-CoV2 virus to his fellow faculty in the Department of Physics & Astronomy. During preparations, Saveez reached out to fellow faculty member Michael Vershinin for help. Vershinin and Saveez have been friends since 2010. “We often bounce ideas off each other. Just to get another opinion and a fresh set of eyes,” said Saffarian.

Vershinin and Saffarian dove deep into the scientific literature to learn as much as possible about corona and related viruses, such as influenza. Their focus was on presenting an overview of the SARS-CoV2 for the colloquium on March 5, 2020. “At the time, I did not immediately see a connection between my HIV research and the SARS-CoV2 virus,” said Saffarian.

Heather Swan

On March 6, 2020, the National Science Foundation (NSF), announced a program of $200,000 Rapid Response Grants for non-medical, non-clinical- care research coronavirus research. The RAPID funding program allows the NSF to quickly review proposals in response to research on issues of severe urgency with regard to availability of data, facilities, or specialized equipment. Saffarian’s colloquium had turned into research opportunity.

Michael Vershinin recognized this research opportunity immediately. Much of the existing NSF research centered on the spread of influenza on an epidemiological level, with fewer answers about the actual virus particle and how climate and specific conditions affect it. “Our work is in the nanoscale,“ said Vershinin. “We can make a faithful replica of the virus packaging that holds everything together. The idea is to figure out what makes this virus fall apart, what makes it tick, and what makes it die.”

Prepared slides

The speed of the NSF approval was impressive. Vershinin and Saffarian submitted their preliminary NSF application on Friday, March 6. Twenty-four hours later, they received preliminary approval, and by Monday, March 9, final approval was issued.

“This application of sophisticated physics instruments and methods to understand how the 2019 coronavirus will behave as the weather changes is a clear example of how our investment in basic research years later prepares us for a response to a crisis that impacts not only our society, but also the whole world,”said Krastan Blagoev, program director in NSF’s Division of Physics.

Abhi Sharma

“You don’t just gain the insight that you want by looking at the virus on a large scale. Looking at a single virus particle is the key to being able to tease out what’s going on,” said the researchers. “Modern biology and biophysics allow us to ask these questions in a way we never could before.”

Saffarian and Vershinin are both members of the Center for Cell and Genome Sciences in the Crocker Science Center, where scientists who apply physics, chemistry and biology work alongside each other and can form collaborations rapidly—a key advantage in the fight against the virus.

Michael Vershinin, Abhi Sharma, Ben Preece, Heather Swann, Saveez Saffarian

Research Funding was provided by NSF under award number PHY- 2026657 for nearly $200,000.

 

Related Stories


11 Billion Years

 

 


Professor Kyle Dawson

11 billion years of history in one map: Astrophysicists reveal largest 3D model of the universe ever created.

(CNN) A global consortium of astrophysicists have created the world's largest three-dimensional map of the universe, a project 20 years in the making that researchers say helps better explain the history of the cosmos.

The Sloan Digital Sky Survey (SDSS), a project involving hundreds of scientists at dozens of institutions worldwide, collected decades of data and mapped the universe with telescopes. With these measurements, spanning more than 2 million galaxies and quasars formed over 11 billion years, scientists can now better understand how the universe developed.

Image courtesy of SDSS

"We know both the ancient history of the Universe and its recent expansion history fairly well, but there's a troublesome gap in the middle 11 billion years," cosmologist Kyle Dawson of the University of Utah, who led the team that announced the SDSS findings on Sunday. "For five years, we have worked to fill in that gap, and we are using that information to provide some of the most substantial advances in cosmology in the last decade," Dawson said in a statement.

Here's how it works: the map revealed the early materials that "define the structure in the Universe, starting from the time when the Universe was only about 300,000 years old." Researchers used the map to measure patterns and signals from different galaxies, and figure out how fast the universe was expanding at different points of history. Looking back in space allows for a look back in time.

"These studies allow us to connect all these measurements into a complete story of the expansion of the Universe," said Will Percival of the University of Waterloo in the statement.

The team also identified "a mysterious invisible component of the Universe called 'dark energy,'" which caused the universe's expansion to start accelerating about six billion years ago. Since then, the universe has only continued to expand "faster and faster," the statement said.

Image courtesy of SDSS

There are still many unanswered questions about dark energy -- it's "extremely difficult to reconcile with our current understanding of particle physics" -- but this puzzle will be left to future projects and researchers, said the statement.

Their findings also "revealed cracks in this picture of the Universe," the statement said. There were discrepancies between researchers' measurements and collected data, and their tools are so precise that it's unlikely to be error or chance. Instead, there might be new and exciting explanations behind the strange numbers, like the possibility that "a previously-unknown form of matter or energy from the early Universe might have left a trace on our history."

The SDSS is "nowhere near done with its mission to map the Universe," it said in the statement. "The SDSS team is busy building the hardware to start this new phase (of mapping stars and black holes) and is looking forward to the new discoveries of the next 20 years."

 

Adapted from a release by Jordan Raddick, SDSS public information officer
Also published in @theU, Spectrum Magazine, CNN, Forbes, and more.

 

HIV Microscopy

HIV Microscopy


Ipsita Saha, graduate research assistant

Pioneering method reveals dynamic structure in HIV.

Viruses are scary. They invade our cells like invisible armies, and each type brings its own strategy of attack. While viruses devastate communities of humans and animals, scientists scramble to fight back. Many utilize electron microscopy, a tool that can “see” what individual molecules in the virus are doing. Yet even the most sophisticated technology requires that the sample be frozen and immobilized to get the highest resolution.

Now, physicists from the University of Utah have pioneered a way of imaging virus-like particles in real time, at room temperature, with impressive resolution. In a new study, the method reveals that the lattice, which forms the major structural component of the human immunodeficiency virus (HIV), is dynamic. The discovery of a diffusing lattice made from Gag and GagPol proteins, long considered to be completely static, opens up potential new therapies.

When HIV particles bud from an infected cell, the viruses experience a lag time before they become infectious. Protease, an enzyme that is embedded as a half-molecule in GagPol proteins, must bond to other similar molecules in a process called dimerization. This triggers the viral maturation that leads to infectious particles. No one knows how these half protease molecules find each other and dimerize, but it may have to do with the rearrangement of the lattice formed by Gag and GagPol proteins that lay just inside of the viral envelope. Gag is the major structural protein and has been shown to be enough to assemble virus-like particles. Gag molecules form a lattice hexagonal structure that intertwines with itself with miniscule gaps interspersed. The new method showed that the Gag protein lattice is not a static one.

The Saffarian Lab in the Crocker Science Center

“This method is one step ahead by using microscopy that traditionally only gives static information. In addition to new microscopy methods, we used a mathematical model and biochemical experiments to verify the lattice dynamics,” said lead author Ipsita Saha, graduate research assistant at the U’s Department of Physics & Astronomy. “Apart from the virus, a major implication of the method is that you can see how molecules move around in a cell. You can study any biomedical structure with this.”

The paper published in Biophysical Journal on June 26, 2020.

Mapping a nanomachine.

The scientists weren’t looking for dynamic structures at first—they just wanted to study the Gag protein lattice. Saha led the two year effort to “hack” microscopy techniques to be able to study virus particles at room temperature to observe their behavior in real life. The scale of the virus is miniscule — about 120 nanometers in diameter—so Saha used interferometric photoactivated localization microscopy (iPALM).

First, Saha tagged the Gag with a fluorescent protein called Dendra2 and produced virus-like particles of the resulting Gag-Dendra2 proteins. These virus-like particles are the same as HIV particles, but made only of the Gag-Dendra2 protein lattice structure. Saha showed that the resulting Gag-Dendra2 proteins assembled the virus-like particles the same way as virus-like particle made up regular Gag proteins. The fluorescent attachment allowed iPALM to image the particle with a 10 nanometer resolution. The scientists found that each immobilized virus-like particle incorporated 1400 to 2400 Gag-Dendra2 proteins arranged in a hexagonal lattice. When they used the iPALM data to reconstruct a time-lapse image of the lattice, it appeared that the lattice of Gag-Dendra2 were not static over time. To make sure, they independently verified it in two ways: mathematically and biochemically.

80 nm sections of cells (2020 Biphys Journal) - Saha & Saffarian

Initially, they divided up the protein lattice into uniform separate segments. Using a correlation analysis, they tested how each segment correlated with itself over time, from 10 to 100 seconds. If each segment continued to correlate with itself, the proteins were stationary. If they lost correlation, the proteins had diffused. They found that over time, the proteins were quite dynamic.

The second way they verified the dynamic lattice was biochemically. For this experiment, they created virus-like particles whose lattice consisted of 80% of Gag wild type proteins, 10% of Gag tagged with SNAP, and 10% of gag tagged with Halo. SNAP and Halo are proteins that can bind a linker which binds them together forever. The idea was to identify whether the molecules in the protein lattice stayed stationary, or if they migrated positions.

Rendering of Gag molecules proteins diffusing across a virus-like particle - Dave Meikle/Saffarian Lab

“The Gag-proteins assemble themselves randomly. The SNAP and Halo molecules could be anywhere within the lattice—some may be close to one another, and some will be far away,” Saha said. “If the lattice changes, there’s a chance that the molecules come close to one another.”

Saha introduced a molecule called Haxs8 into the virus-like particles. Haxs8 is a dimerizer—a molecule that covalently binds SNAP and Halo proteins when they are within binding radius of one another. If SNAP or Halo molecules move next to each other, they’ll produce a dimerized complex. She tracked these dimerized complex concentrations over time. If the concentration changed, it would indicate that new pairs of molecules found each other. If the concentration decreased, it would indicate the proteins broke apart. Either way, it would indicate that movement had taken place. They found that over time, the percentage of the dimerized complex increased; HALO and SNAP Gag proteins were moving all over the lattice and coming together over time.

A new tool to study viruses.

This is the first study to show that the protein lattice structure of an enveloped virus is dynamic. This new tool will be important to better understand the changes that occur within the lattice as new virus particles go from immaturity to dangerously infectious.

Saveez Saffarian and Ipsita Saha

“What are the molecular mechanisms that lead to infection? It opens up a new line of study,” said Saha. “If you can figure out that process, maybe you can do something to prevent them from finding each other, like a type of drug that would stop the virus in its tracks.”

Saveez Saffarian, professor in the Department of Physics & Astronomy at the U, was senior author on the paper.

 

by Lisa Potter first published in @theU

Also published in Eurekalert
 

Crab Nebula

Utah scientists detect Crab Nebula using innovative gamma-ray telescope.

Scientists in the Cherenkov Telescope Array (CTA) consortium today announced at the 236th meeting of the American Astronomical Society (AAS) that they have detected gamma rays from the Crab Nebula using a prototype Schwarzschild-Couder Telescope (pSCT), proving the viability of the novel telescope design for use in gamma-ray astrophysics. University of Utah faculty and staff in the Department of Physics & Astronomy are key members of the international research team announcing this technological breakthrough.

Animation showing 18 gamma-ray events from the Crab Nebula.

“The Crab Nebula is the brightest steady source of TeV, or very-high-energy, gamma rays in the sky, so detecting it is an excellent way of proving the pSCT technology,” said Justin Vandenbroucke, associate professor, University of Wisconsin. “Very-high-energy gamma rays are the highest energy photons in the universe and can unveil the physics of extreme objects including black holes and possibly dark matter.”v

Detecting the Crab Nebula with the pSCT is more than just proof-positive for the telescope itself. It lays the groundwork for the future of gamma-ray astrophysics. “We’ve established this new technology, which will measure gamma rays with extraordinary precision, enabling future discoveries,” said Vandenbroucke. “Gamma-ray astronomy is already at the heart of the new multi-messenger astrophysics, and the SCT technology will make it an even more important player.”

The use of secondary mirrors in gamma-ray telescopes is a leap forward in innovation for the relatively young field of very-high-energy gamma-ray astronomy, which has moved rapidly to the forefront of astrophysics. “Just over three decades ago, TeV gamma rays were first detected in the universe, from the Crab Nebula, on the same mountain where the pSCT sits today,” said Vandenbroucke. “That was a real breakthrough, opening a cosmic window with light that is a trillion times more energetic than we can see with our eyes. Today, we’re using two mirror surfaces instead of one, and state-of-the-art sensors and electronics to study these gamma rays with exquisite resolution.”

The initial pSCT Crab Nebula detection was made possible by leveraging key simultaneous observations with the co-located VERITAS (Very Energetic Radiation Imaging Telescope Array System) observatory. “We have successfully evolved the way gamma-ray astronomy has been done during the past 50 years, enabling studies to be performed in much less time,” said Wystan Benbow, director, VERITAS. “Several future programs will particularly benefit, including surveys of the gamma-ray sky, studies of large objects like supernova remnants, and searches for multi-messenger counterparts to astrophysical neutrinos and gravitational wave events.”

The pSCT - photo: Amy C. Oliver

Located at the Fred Lawrence Whipple Observatory in Amado, Arizona, the pSCT was inaugurated in January 2019 and saw first light the same week. After a year of commissioning work, scientists began observing the Crab Nebula in January 2020, but the project has been underway for more than a decade.

“We first proposed the idea of applying this optical system to TeV gamma-ray astronomy nearly 15 years ago, and my colleagues and I built a team in the U.S. and internationally to prove that this technology could work,” said Vladimir Vassiliev, principal investigator, pSCT. “What was once a theoretical limit to this technology is now well within our grasp, and continued improvements to the technology and the electronics will further increase our capability to detect gamma rays at resolutions and rates we once only ever dreamed of.”

David Kieda, professor at the U and dean of the Graduate School, was principal investigator of the U pSCT team and system engineer of the telescope. Along with Harold Simpson, facilities director of the U’s Department of Physics & Astronomy, and graduate research assistant Ahron Barber, Kieda led the design and fabrication of multiple auxiliary systems for the telescope:  sun protection, signal cable, power and communication systems and the specification and selection of the telescope’s drive system. The Utah team also solves a big problem—how to keep the telescope’s sophisticated high speed  camera cool.

“The camera is like a racecar engine the size of the toaster—it generates a lot of heat,” Kieda said. “We can’t vent the heat near the camera because that would distort the local air and affect the telescope performance. So we came up with a sophisticated cooling system using high capacity heat exchangers and fans in the camera, cooled by a remotely located chilled water supply.”

Kieda was also tasked with integrating all the telescope subsystems originating from teams around the country into a workable system.

“I call this ‘putting  the ship in the bottle’. It’s the same thing building cameras—how do I actually get the pieces together correctly?” Kieda said. “The telescope camera weighs nearly a thousand pounds. You have to stage the lifts, position it, and install it in tight quarters without damaging the secondary mirrors , while keep everybody safe. It was a challenge—this is the first time anyone has built this type of telescope.”

The pSCT was made possible by the contributions of thirty institutions and five critical industry partners across the United States, Italy, Germany, Japan, and Mexico, and by funding through the U.S National Science Foundation Major Research Instrumentation Program.

“That a prototype of a future facility can yield such a tantalizing result promises great things from the full capability, and exemplifies NSF’s interest in creating new possibilities that can enable a project to attract wide-spread support,” said Nigel Sharp, program manager, National Science Foundation.

Now demonstrated, the pSCT’s current and upcoming innovations will lay the groundwork for use in the future Cherenkov Telescope Array observatory, which will host more than 100 gamma-ray telescopes. “The pSCT, and its innovations, are pathfinding for the future CTA, which will detect gamma-ray sources at around 100 times faster than VERITAS, which is the current state of the art,” said Benbow. “We have demonstrated that this new technology for gamma-ray astronomy unequivocally works. The promise is there for this groundbreaking new observatory, and it opens a tremendous amount of discovery potential.”

About the pSCT

The SCT optical design was first conceptualized by U.S. members of CTA in 2006, and the construction of the pSCT was funded in 2012. Preparation of the pSCT site at the base of Mt. Hopkins in Amado, AZ, began in late 2014, and the steel structure was assembled on site in 2016. The installation of the pSCT’s 9.7-m primary mirror surface —consisting of 48 aspheric mirror panels—occurred in early 2018, and was followed by the camera installation in May 2018 and the 5.4-m secondary mirror surface installation—consisting of 24 aspheric mirror panels—in August 2018. Scientists opened the telescope’s optical surfaces and observed first light in January 2019. It began scientific operations in January 2020.  The SCT is based on a 114 year-old two-mirror optical system first proposed by Karl Schwarzschild in 1905, but only recently became possible to construct due to the essential research and development progress made at the Brera Astronomical Observatory, the Media Lario Technologies Incorporated and the Istituto Nazionale di Fisica Nucleare, all located in Italy. pSCT operations are funded by the National Science Foundation and the Smithsonian Institution.

For more information visit https://www.cta-observatory.org/project/technology/sct/ 

About CTA

CTA is a global initiative to build the world’s largest and most sensitive very-high-energy gamma-ray observatory consisting of about 120 telescopes split into a southern array at Paranal, Chile and a northern array at La Palma, Spain. More than 1,500 scientists and engineers from 31 countries are engaged in the scientific and technical development of CTA. Plans for the construction of the observatory are managed by the CTAO gGmbH, which is governed by Shareholders and Associate Members from a growing number of countries. CTA will be the first ground-based gamma-ray astronomy observatory open to the worldwide astronomical and particle physics communities. *Adapted from a release written by Amy Oliver, Fred Lawrence Whipple Observatory.

For more information visit http://cta-observatory.org/ 

Media Contacts

Dave Kieda, Dean of the Graduate School; professor, Department of Physics & Astronomy

Lisa Potter, research/science communications, University of Utah Communications

 

- by Lisa Potter - UNews

 

McKay Hyde

McKay Hyde (Honors B.A. Mathematics, B.A. Physics ’97) always enjoyed math and science, but it was taking a series of physics classes at the U, between his junior and senior year in high school, that changed his life. “I always enjoyed mathematics,” he said. “But physics showed me how mathematics could be used to solve real-world problems. That was tremendously exciting to me and still is.”

The Hyde Family

Today Hyde is managing director in Equities Engineering for the New York office of Goldman Sachs and is responsible for building systems to manage securities inventory and collateral, working closely with teams across Engineering, as well as the Finance, Operations and Securities divisions. “I like being part of a cross-functional team, building relationships and working together to find solutions that impact the organization and the clients we serve,” he said. “The combination of using mathematics and computer science applied to practical problems is very rewarding.”

He joined Goldman Sachs in 2006 and was named managing director in 2010. At Goldman Sachs, Hyde has had a range of responsibilities. He was head of the global Market Risk Technology team within Finance and Risk Engineering. Before that, Hyde led the Trading Strats team for Interest Rate Products in New York as well as the Core Quant Strats team, which developed models, algorithmic trading methods, and pricing infrastructure used by a number of trading desks. (“Strat” is a term that originated with Goldman Sachs to describe individuals that use tools from mathematics and computer science to build financial models In his Core Quant Strat role, Hyde led the build out of the Strat teams in Bengaluru (formerly Bangalore), India, known as “The Silicon Valley of India.”

McKay Hyde, BS'97

Roots in Utah and at the U

Hyde grew up in Salt Lake City and North Salt Lake, graduating from Woods Cross High School. He met his wife, Marie, in an “outstanding” honors class taught by Professor Emeritus Jack Newell (“Education and Identity”), who served as dean and principal architect of the U’s Liberal Education Program. In his first two years at the U Hyde was also active in the U’s music program, playing the trumpet in several university bands—Concert, Marching, Pep, and Jazz.

Hyde gives credit to the education he received at the U with helping prepare him for a career in the financial sector. “I received a tremendous education in physics and mathematics, including research experience working in the Cosmic Ray group and in probability theory. The U provides great value as an institution—a quality education at a reasonable cost,” he said.

He also has great memories of three professors who made a difference for him during his undergraduate years: Davar Khoshnevisan (professor and current chair of the Math Department), Hyde’s undergraduate research advisor in mathematics; Martha Bradley, former dean of the Honors College, and the late Professor Gale Dick, whose “physics lectures were a work of art,” said Hyde.

Using Agile Principles in Undergraduate Research

Hyde believes students should be encouraged to participate in research opportunities early in their undergraduate years, and he applauds the decision of the College of Science to focus on a new program called the Undergraduate Research Initiative. “Research is very different from coursework—it’s really a separate skill,” said Hyde. “Engaging and encouraging undergrads to work together in research opportunities provides a far richer educational experience that really pays off in preparing students for demanding careers.”

To that end, Hyde thinks the same concepts and principles that teams use in Agile software development can effectively be applied to something like the Undergraduate Research Initiative program. “Creating an Agile environment—whether in software development or research—is essentially the same,” said Hyde.

“It involves developing and supporting a culture that encourages a team of people to work toward a common goal. To that end, a large project or research problem can be broken down into smaller tasks. A scrum master or team leader evaluates the special skills and talents of each individual on the team, assigns them to specific tasks, and the team comes together frequently—typically during a daily stand up —over focused sprints—typically 2-3 weeks long—to complete those tasks yielding demonstrable progress at the end of each sprint. By repeating this process, the team improves while building confidence and trust through repeated accomplishment of its goals.”

Previous Academic Career

After earning degrees at the U in 1997 Hyde completed a Ph.D. in Applied and Computational Mathematics from the California Institute of Technology in 2003. Hyde worked as a postdoc in the School of Mathematics at the University of Minnesota and later joined Rice University as an assistant professor of computational and applied mathematics.

When Hyde first left academia to work at Goldman Sachs, he wondered if he would need to dress and act like a “stereotypical banker.” But he discovered it was a much easier transition. “I found smart people from technical fields applying their skills in the area of finance,” he said. “It made me realize the importance of being open to new opportunities—taking the skills and talents you have and using them in different fields or industries to build relationships with others and do meaningful work. That’s really what it’s all about.”

Hyde and his wife, Marie, enjoy living in New Jersey and are the parents of four children: a son studying music at Berklee College of Music; a daughter at Brigham Young University (currently serving a church mission in Peru); and a son and daughter in high school.

 - First Published in Discover Magazine, Fall 2019

Christoph Boehme

Christoph Boehme

Dean Peter Trapa announced that Professor Christoph Boehme has accepted an offer to serve as chair of the Department of Physics & Astronomy, effective July 1, 2020.

"Professor Boehme is deeply knowledgable and committed to the research and educational missions of the department, and has served with distinction as interim chair this year," Trapa said. "Christoph has my full and unwavering confidence and support, as well as that of SVPAA Dan Reed, in leading the department forward."

Previously, Boehme served as associate chair of the department from 2010-2015. His research is focused on the exploration of spin-dependent electronic processes in condensed matter. The goal of his work is to develop sensitive coherent spin motion detection schemes for small spin ensembles that are needed for quantum computing and general materials research.

A child of the 1970s, Christoph was born and raised in Oppenau, a small town in southwest Germany, 30 miles east of the French city of Strasbourg. After obtaining an undergraduate degree in electrical engineering, and committing to 15 months of civil services caring for disabled people (chosen to avoid the military draft), he moved to Heidelberg, Germany in 1994 to study physics at the University of Heidelberg.

In 1997 Boehme won a Fulbright Student Scholarship which brought him to the United States for the first time, where he studied at North Carolina State University and met his wife Kristie. In 2000 Christoph and Kristie moved to Berlin, Germany where they lived for 5 years while he worked for the Hahn-Meitner Institut, a national laboratory. He finished his dissertation work as a graduate student of the University of Marburg in 2002 and spent an additional three years working as a postdoctoral researcher.

Christoph moved to Utah in 2006 to join the Department of Physics & Astronomy as an Assistant Professor. He was promoted into the rank of Associate Professor and awarded tenure in 2010, and promoted to the rank of Professor in 2013. Boehme received the U’s Distinguished Scholarly and Creative Research Award in 2018 for his contributions and scientific breakthroughs in electron spin physics and for his leadership in the field of spintronics.

 

50th Anniversary

GOLDEN Anniversary
1970-2020


July 1, 2020, marks the 50-year anniversary of the College of Science, comprised of the School of Biological Sciences, and Departments of Chemistry, Mathematics, and Physics & Astronomy.

A Brief History

Henry Eyring

When the University of Deseret was founded in 1850 in the Territory of Utah, it was primarily a training school for teachers. The newly formed university taught only a handful of topics, including algebra, astronomy, botany, chemistry, geometry, and zoology. Indeed, mathematics and physical sciences were well represented from the earliest days of the university.

By the 1920s, only six organized schools existed at the U: Arts and Sciences, Business, Education, Engineering and Mines, Law, and a two-year Medical School.

James M. Sugihara, PhD 1947

Between 1948 and 1958, through two reorganizations, the School of Arts and Sciences expanded to become the College of Letters and Science. However, the composition was enormous, including departments of air science, anthropology, botany, chemistry, English, experimental biology, genetics and cytology, history, journalism, languages, mathematics, military science and tactics, naval science and tactics, philosophy, physics, political science, psychology, sociology, speech and theater arts, and zoology.

By the late 1960s, Pete D. Gardner, a prominent organic chemist at the U, had convinced the central administration that mathematics and physical sciences would be most effective if separated from the large, amorphous College of Letters and Science.

Therefore, on July 1, 1970, the College of Letters and Science was replaced by three new colleges: Humanities, Social and Behavioral Science, and the College of Science.

The disciplines of biology, chemistry, mathematics, and physics and astronomy were ideally consolidated in one cohesive academic unit. Gardner was appointed as the first dean of the College and served from 1970 to 1973.

The College of Science utilized seven buildings in 1970, including Chemistry (the north wing was finished in 1968), South Biology (completed in 1969), North Biology (the James Talmage Building), Life Sciences (built in 1920 and former home the of School of Medicine), the John Widtsoe Building (housed both the chemistry and the physics departments), the James Fletcher Building and South Physics. The total faculty consisted of about 80 tenured or tenure-track professors across all four departments.

Modern Day Powerhouse

Today the College of Science is one of the largest colleges within the University of Utah, offering undergraduate and graduate degrees in biology, chemistry, mathematics, and physics and astronomy, plus specialized degrees such as a doctorate in chemical physics.

The College supports nearly 2,000 undergraduate science majors and 475 graduate students and employs 143 full-time tenured or tenure-track faculty. The College also employs hundreds of adjunct and auxiliary faculty, postdoctoral fellows, research assistants, lab technicians, and support staff.

Last year, the College received about $36 million in external research funding, which is nearly seven percent of the University’s total external research revenue.

“The exceptional caliber of the College’s faculty has been a driving force behind the University’s ascension as a world-class research university,” says Peter Trapa.

The College has constructed new educational and research facilities in recent years, including the Thatcher Building for Biological and Biophysical Chemistry and the Crocker Science Center on Presidents Circle. The two buildings combined serve thousands of students each year with professional academic advising, expanded classrooms, and cutting-edge labs and instrumentation.

This year, a new project–the Stewart Building for Applied Sciences – was approved by the Utah legislature to renovate the historic William Stewart building and construct a 100,000 square-foot addition to house the Department of Physics & Astronomy and the Department of Atmospheric Sciences.

The proposed Applied Sciences Center will be 140,729 square-feet in size, consisting of 40,729 square feet of renovated space and 100,000 square feet of new construction. Undergraduate teaching labs, research labs, and classrooms will comprise 90% of the footprint and faculty offices will use 10% of the space. The new facility will support more than 40 faculty members, 200 undergraduate majors, 115 graduate students, and nearly 5,000 students taking STEM courses each year at the U.

Building the Future

As the 21st century unfolds amidst a global pandemic, the importance of science and mathematics will only continue to increase.  Our quality of life and economic future depends on the next generation of scientists. The College of Science is refreshing its strategic plan to further strengthen and enhance its academic and educational programs and its scientific leadership in the nation. Emerging priorities include:

  • Fully implement the Science Research Initiative (SRI) in the Crocker Science Center to serve 500 undergraduates per year with specialized research opportunities.
  • Establish new endowed faculty chair positions in each department, and increase the number of endowed professorships and graduate fellowships.
  • Continue to increase the amount of external research funding received in the College per year.
  • Invest in new and existing research directions to strengthen the College’s faculty.
  • Continue to advance our commitment to diversity, and foster inclusive communities of faculty, staff, and students.
  • Increase the six-year graduation rate of declared Science majors, and increase the total number of STEM graduates at the University.

Pearl Sandick, Associate Dean for Faculty Affairs, has led an effort that has distilled the input of faculty, staff, and students into a coherent plan for the future.

“The College will be prepared to meet the demands of the next 50 years in science education and research,” says Sandick. “We will see our way through the current crisis,  with an enhanced focus and commitment to student success, providing the facilities and rigorous training needed to boost the number of STEM graduates in Utah.”

The College is sincerely grateful for its numerous friends and supporters over the last 50 years. Each gift, large and small, propels the College forward. Please join us to write the next chapter, and the following 50 chapters, in the College of Science.