Rapid Response Research

Rapid Response Research


1.08.2020

Researchers identify a new coronavirus in Hubei province, China.

1
1.28.2020

Saveez Saffarian flies to Barcelona, Spain, to present research on HIV at the New Concepts in Virology conference

2
1.30.2020

The W.H.O. declares a global health emergency with 9,800 infected worldwide.

3
3.05.2020

Saffarian presents a colloquium on SARS-CoV2 virus to the science faculty.

4
3.06.2020

NSF announces RAPID research grants for COVID-19.

5
3.06.2020

Vershinin and Saffarian submit preliminary NSF proposal.

6
3.07.2020

Preliminary NSF proposal is approved.

7
3.09.2020

NSF RAPID Research Grant approved.

8
5.21.2020

Research paper on CoV2 virus reaction to the environment submitted.

9

Saveez Saffarian

On January 30, 2020, Saveez Saffarian traveled to Barcelona, Spain, to present HIV research at the New Concepts in Virology conference. “There was a lot of speculation about SARS-CoV2 in that meeting. Although, at the time, it was far less than it would become,” said Saffarian.

Michael Vershinin

Upon returning to Utah, Saffarian was asked to present a colloquium on the SARS-CoV2 virus to his fellow faculty in the Department of Physics & Astronomy. During preparations, Saveez reached out to fellow faculty member Michael Vershinin for help. Vershinin and Saveez have been friends since 2010. “We often bounce ideas off each other. Just to get another opinion and a fresh set of eyes,” said Saffarian.

Vershinin and Saffarian dove deep into the scientific literature to learn as much as possible about corona and related viruses, such as influenza. Their focus was on presenting an overview of the SARS-CoV2 for the colloquium on March 5, 2020. “At the time, I did not immediately see a connection between my HIV research and the SARS-CoV2 virus,” said Saffarian.

Heather Swan

On March 6, 2020, the National Science Foundation (NSF), announced a program of $200,000 Rapid Response Grants for non-medical, non-clinical- care research coronavirus research. The RAPID funding program allows the NSF to quickly review proposals in response to research on issues of severe urgency with regard to availability of data, facilities, or specialized equipment. Saffarian’s colloquium had turned into research opportunity.

Michael Vershinin recognized this research opportunity immediately. Much of the existing NSF research centered on the spread of influenza on an epidemiological level, with fewer answers about the actual virus particle and how climate and specific conditions affect it. “Our work is in the nanoscale,“ said Vershinin. “We can make a faithful replica of the virus packaging that holds everything together. The idea is to figure out what makes this virus fall apart, what makes it tick, and what makes it die.”

Prepared slides

The speed of the NSF approval was impressive. Vershinin and Saffarian submitted their preliminary NSF application on Friday, March 6. Twenty-four hours later, they received preliminary approval, and by Monday, March 9, final approval was issued.

“This application of sophisticated physics instruments and methods to understand how the 2019 coronavirus will behave as the weather changes is a clear example of how our investment in basic research years later prepares us for a response to a crisis that impacts not only our society, but also the whole world,”said Krastan Blagoev, program director in NSF’s Division of Physics.

Abhi Sharma

“You don’t just gain the insight that you want by looking at the virus on a large scale. Looking at a single virus particle is the key to being able to tease out what’s going on,” said the researchers. “Modern biology and biophysics allow us to ask these questions in a way we never could before.”

Saffarian and Vershinin are both members of the Center for Cell and Genome Sciences in the Crocker Science Center, where scientists who apply physics, chemistry and biology work alongside each other and can form collaborations rapidly—a key advantage in the fight against the virus.

Michael Vershinin, Abhi Sharma, Ben Preece, Heather Swann, Saveez Saffarian

Research Funding was provided by NSF under award number PHY- 2026657 for nearly $200,000.

 

Related Stories


11 Billion Years

 

 


Professor Kyle Dawson

11 billion years of history in one map: Astrophysicists reveal largest 3D model of the universe ever created.

(CNN) A global consortium of astrophysicists have created the world's largest three-dimensional map of the universe, a project 20 years in the making that researchers say helps better explain the history of the cosmos.

The Sloan Digital Sky Survey (SDSS), a project involving hundreds of scientists at dozens of institutions worldwide, collected decades of data and mapped the universe with telescopes. With these measurements, spanning more than 2 million galaxies and quasars formed over 11 billion years, scientists can now better understand how the universe developed.

Image courtesy of SDSS

"We know both the ancient history of the Universe and its recent expansion history fairly well, but there's a troublesome gap in the middle 11 billion years," cosmologist Kyle Dawson of the University of Utah, who led the team that announced the SDSS findings on Sunday. "For five years, we have worked to fill in that gap, and we are using that information to provide some of the most substantial advances in cosmology in the last decade," Dawson said in a statement.

Here's how it works: the map revealed the early materials that "define the structure in the Universe, starting from the time when the Universe was only about 300,000 years old." Researchers used the map to measure patterns and signals from different galaxies, and figure out how fast the universe was expanding at different points of history. Looking back in space allows for a look back in time.

"These studies allow us to connect all these measurements into a complete story of the expansion of the Universe," said Will Percival of the University of Waterloo in the statement.

The team also identified "a mysterious invisible component of the Universe called 'dark energy,'" which caused the universe's expansion to start accelerating about six billion years ago. Since then, the universe has only continued to expand "faster and faster," the statement said.

Image courtesy of SDSS

There are still many unanswered questions about dark energy -- it's "extremely difficult to reconcile with our current understanding of particle physics" -- but this puzzle will be left to future projects and researchers, said the statement.

Their findings also "revealed cracks in this picture of the Universe," the statement said. There were discrepancies between researchers' measurements and collected data, and their tools are so precise that it's unlikely to be error or chance. Instead, there might be new and exciting explanations behind the strange numbers, like the possibility that "a previously-unknown form of matter or energy from the early Universe might have left a trace on our history."

The SDSS is "nowhere near done with its mission to map the Universe," it said in the statement. "The SDSS team is busy building the hardware to start this new phase (of mapping stars and black holes) and is looking forward to the new discoveries of the next 20 years."

 

Adapted from a release by Jordan Raddick, SDSS public information officer
Also published in @theU, Spectrum Magazine, CNN, Forbes, and more.

 

HIV Microscopy

HIV Microscopy


Ipsita Saha, graduate research assistant

Pioneering method reveals dynamic structure in HIV.

Viruses are scary. They invade our cells like invisible armies, and each type brings its own strategy of attack. While viruses devastate communities of humans and animals, scientists scramble to fight back. Many utilize electron microscopy, a tool that can “see” what individual molecules in the virus are doing. Yet even the most sophisticated technology requires that the sample be frozen and immobilized to get the highest resolution.

Now, physicists from the University of Utah have pioneered a way of imaging virus-like particles in real time, at room temperature, with impressive resolution. In a new study, the method reveals that the lattice, which forms the major structural component of the human immunodeficiency virus (HIV), is dynamic. The discovery of a diffusing lattice made from Gag and GagPol proteins, long considered to be completely static, opens up potential new therapies.

When HIV particles bud from an infected cell, the viruses experience a lag time before they become infectious. Protease, an enzyme that is embedded as a half-molecule in GagPol proteins, must bond to other similar molecules in a process called dimerization. This triggers the viral maturation that leads to infectious particles. No one knows how these half protease molecules find each other and dimerize, but it may have to do with the rearrangement of the lattice formed by Gag and GagPol proteins that lay just inside of the viral envelope. Gag is the major structural protein and has been shown to be enough to assemble virus-like particles. Gag molecules form a lattice hexagonal structure that intertwines with itself with miniscule gaps interspersed. The new method showed that the Gag protein lattice is not a static one.

The Saffarian Lab in the Crocker Science Center

“This method is one step ahead by using microscopy that traditionally only gives static information. In addition to new microscopy methods, we used a mathematical model and biochemical experiments to verify the lattice dynamics,” said lead author Ipsita Saha, graduate research assistant at the U’s Department of Physics & Astronomy. “Apart from the virus, a major implication of the method is that you can see how molecules move around in a cell. You can study any biomedical structure with this.”

The paper published in Biophysical Journal on June 26, 2020.

Mapping a nanomachine.

The scientists weren’t looking for dynamic structures at first—they just wanted to study the Gag protein lattice. Saha led the two year effort to “hack” microscopy techniques to be able to study virus particles at room temperature to observe their behavior in real life. The scale of the virus is miniscule — about 120 nanometers in diameter—so Saha used interferometric photoactivated localization microscopy (iPALM).

First, Saha tagged the Gag with a fluorescent protein called Dendra2 and produced virus-like particles of the resulting Gag-Dendra2 proteins. These virus-like particles are the same as HIV particles, but made only of the Gag-Dendra2 protein lattice structure. Saha showed that the resulting Gag-Dendra2 proteins assembled the virus-like particles the same way as virus-like particle made up regular Gag proteins. The fluorescent attachment allowed iPALM to image the particle with a 10 nanometer resolution. The scientists found that each immobilized virus-like particle incorporated 1400 to 2400 Gag-Dendra2 proteins arranged in a hexagonal lattice. When they used the iPALM data to reconstruct a time-lapse image of the lattice, it appeared that the lattice of Gag-Dendra2 were not static over time. To make sure, they independently verified it in two ways: mathematically and biochemically.

80 nm sections of cells (2020 Biphys Journal) - Saha & Saffarian

Initially, they divided up the protein lattice into uniform separate segments. Using a correlation analysis, they tested how each segment correlated with itself over time, from 10 to 100 seconds. If each segment continued to correlate with itself, the proteins were stationary. If they lost correlation, the proteins had diffused. They found that over time, the proteins were quite dynamic.

The second way they verified the dynamic lattice was biochemically. For this experiment, they created virus-like particles whose lattice consisted of 80% of Gag wild type proteins, 10% of Gag tagged with SNAP, and 10% of gag tagged with Halo. SNAP and Halo are proteins that can bind a linker which binds them together forever. The idea was to identify whether the molecules in the protein lattice stayed stationary, or if they migrated positions.

Rendering of Gag molecules proteins diffusing across a virus-like particle - Dave Meikle/Saffarian Lab

“The Gag-proteins assemble themselves randomly. The SNAP and Halo molecules could be anywhere within the lattice—some may be close to one another, and some will be far away,” Saha said. “If the lattice changes, there’s a chance that the molecules come close to one another.”

Saha introduced a molecule called Haxs8 into the virus-like particles. Haxs8 is a dimerizer—a molecule that covalently binds SNAP and Halo proteins when they are within binding radius of one another. If SNAP or Halo molecules move next to each other, they’ll produce a dimerized complex. She tracked these dimerized complex concentrations over time. If the concentration changed, it would indicate that new pairs of molecules found each other. If the concentration decreased, it would indicate the proteins broke apart. Either way, it would indicate that movement had taken place. They found that over time, the percentage of the dimerized complex increased; HALO and SNAP Gag proteins were moving all over the lattice and coming together over time.

A new tool to study viruses.

This is the first study to show that the protein lattice structure of an enveloped virus is dynamic. This new tool will be important to better understand the changes that occur within the lattice as new virus particles go from immaturity to dangerously infectious.

Saveez Saffarian and Ipsita Saha

“What are the molecular mechanisms that lead to infection? It opens up a new line of study,” said Saha. “If you can figure out that process, maybe you can do something to prevent them from finding each other, like a type of drug that would stop the virus in its tracks.”

Saveez Saffarian, professor in the Department of Physics & Astronomy at the U, was senior author on the paper.

 

by Lisa Potter first published in @theU

Also published in Eurekalert
 

Crab Nebula

Utah scientists detect Crab Nebula using innovative gamma-ray telescope.

Scientists in the Cherenkov Telescope Array (CTA) consortium today announced at the 236th meeting of the American Astronomical Society (AAS) that they have detected gamma rays from the Crab Nebula using a prototype Schwarzschild-Couder Telescope (pSCT), proving the viability of the novel telescope design for use in gamma-ray astrophysics. University of Utah faculty and staff in the Department of Physics & Astronomy are key members of the international research team announcing this technological breakthrough.

Animation showing 18 gamma-ray events from the Crab Nebula.

“The Crab Nebula is the brightest steady source of TeV, or very-high-energy, gamma rays in the sky, so detecting it is an excellent way of proving the pSCT technology,” said Justin Vandenbroucke, associate professor, University of Wisconsin. “Very-high-energy gamma rays are the highest energy photons in the universe and can unveil the physics of extreme objects including black holes and possibly dark matter.”v

Detecting the Crab Nebula with the pSCT is more than just proof-positive for the telescope itself. It lays the groundwork for the future of gamma-ray astrophysics. “We’ve established this new technology, which will measure gamma rays with extraordinary precision, enabling future discoveries,” said Vandenbroucke. “Gamma-ray astronomy is already at the heart of the new multi-messenger astrophysics, and the SCT technology will make it an even more important player.”

The use of secondary mirrors in gamma-ray telescopes is a leap forward in innovation for the relatively young field of very-high-energy gamma-ray astronomy, which has moved rapidly to the forefront of astrophysics. “Just over three decades ago, TeV gamma rays were first detected in the universe, from the Crab Nebula, on the same mountain where the pSCT sits today,” said Vandenbroucke. “That was a real breakthrough, opening a cosmic window with light that is a trillion times more energetic than we can see with our eyes. Today, we’re using two mirror surfaces instead of one, and state-of-the-art sensors and electronics to study these gamma rays with exquisite resolution.”

The initial pSCT Crab Nebula detection was made possible by leveraging key simultaneous observations with the co-located VERITAS (Very Energetic Radiation Imaging Telescope Array System) observatory. “We have successfully evolved the way gamma-ray astronomy has been done during the past 50 years, enabling studies to be performed in much less time,” said Wystan Benbow, director, VERITAS. “Several future programs will particularly benefit, including surveys of the gamma-ray sky, studies of large objects like supernova remnants, and searches for multi-messenger counterparts to astrophysical neutrinos and gravitational wave events.”

The pSCT - photo: Amy C. Oliver

Located at the Fred Lawrence Whipple Observatory in Amado, Arizona, the pSCT was inaugurated in January 2019 and saw first light the same week. After a year of commissioning work, scientists began observing the Crab Nebula in January 2020, but the project has been underway for more than a decade.

“We first proposed the idea of applying this optical system to TeV gamma-ray astronomy nearly 15 years ago, and my colleagues and I built a team in the U.S. and internationally to prove that this technology could work,” said Vladimir Vassiliev, principal investigator, pSCT. “What was once a theoretical limit to this technology is now well within our grasp, and continued improvements to the technology and the electronics will further increase our capability to detect gamma rays at resolutions and rates we once only ever dreamed of.”

David Kieda, professor at the U and dean of the Graduate School, was principal investigator of the U pSCT team and system engineer of the telescope. Along with Harold Simpson, facilities director of the U’s Department of Physics & Astronomy, and graduate research assistant Ahron Barber, Kieda led the design and fabrication of multiple auxiliary systems for the telescope:  sun protection, signal cable, power and communication systems and the specification and selection of the telescope’s drive system. The Utah team also solves a big problem—how to keep the telescope’s sophisticated high speed  camera cool.

“The camera is like a racecar engine the size of the toaster—it generates a lot of heat,” Kieda said. “We can’t vent the heat near the camera because that would distort the local air and affect the telescope performance. So we came up with a sophisticated cooling system using high capacity heat exchangers and fans in the camera, cooled by a remotely located chilled water supply.”

Kieda was also tasked with integrating all the telescope subsystems originating from teams around the country into a workable system.

“I call this ‘putting  the ship in the bottle’. It’s the same thing building cameras—how do I actually get the pieces together correctly?” Kieda said. “The telescope camera weighs nearly a thousand pounds. You have to stage the lifts, position it, and install it in tight quarters without damaging the secondary mirrors , while keep everybody safe. It was a challenge—this is the first time anyone has built this type of telescope.”

The pSCT was made possible by the contributions of thirty institutions and five critical industry partners across the United States, Italy, Germany, Japan, and Mexico, and by funding through the U.S National Science Foundation Major Research Instrumentation Program.

“That a prototype of a future facility can yield such a tantalizing result promises great things from the full capability, and exemplifies NSF’s interest in creating new possibilities that can enable a project to attract wide-spread support,” said Nigel Sharp, program manager, National Science Foundation.

Now demonstrated, the pSCT’s current and upcoming innovations will lay the groundwork for use in the future Cherenkov Telescope Array observatory, which will host more than 100 gamma-ray telescopes. “The pSCT, and its innovations, are pathfinding for the future CTA, which will detect gamma-ray sources at around 100 times faster than VERITAS, which is the current state of the art,” said Benbow. “We have demonstrated that this new technology for gamma-ray astronomy unequivocally works. The promise is there for this groundbreaking new observatory, and it opens a tremendous amount of discovery potential.”

About the pSCT

The SCT optical design was first conceptualized by U.S. members of CTA in 2006, and the construction of the pSCT was funded in 2012. Preparation of the pSCT site at the base of Mt. Hopkins in Amado, AZ, began in late 2014, and the steel structure was assembled on site in 2016. The installation of the pSCT’s 9.7-m primary mirror surface —consisting of 48 aspheric mirror panels—occurred in early 2018, and was followed by the camera installation in May 2018 and the 5.4-m secondary mirror surface installation—consisting of 24 aspheric mirror panels—in August 2018. Scientists opened the telescope’s optical surfaces and observed first light in January 2019. It began scientific operations in January 2020.  The SCT is based on a 114 year-old two-mirror optical system first proposed by Karl Schwarzschild in 1905, but only recently became possible to construct due to the essential research and development progress made at the Brera Astronomical Observatory, the Media Lario Technologies Incorporated and the Istituto Nazionale di Fisica Nucleare, all located in Italy. pSCT operations are funded by the National Science Foundation and the Smithsonian Institution.

For more information visit https://www.cta-observatory.org/project/technology/sct/ 

About CTA

CTA is a global initiative to build the world’s largest and most sensitive very-high-energy gamma-ray observatory consisting of about 120 telescopes split into a southern array at Paranal, Chile and a northern array at La Palma, Spain. More than 1,500 scientists and engineers from 31 countries are engaged in the scientific and technical development of CTA. Plans for the construction of the observatory are managed by the CTAO gGmbH, which is governed by Shareholders and Associate Members from a growing number of countries. CTA will be the first ground-based gamma-ray astronomy observatory open to the worldwide astronomical and particle physics communities. *Adapted from a release written by Amy Oliver, Fred Lawrence Whipple Observatory.

For more information visit http://cta-observatory.org/ 

Media Contacts

Dave Kieda, Dean of the Graduate School; professor, Department of Physics & Astronomy

Lisa Potter, research/science communications, University of Utah Communications

 

- by Lisa Potter - UNews

 

McKay Hyde

McKay Hyde (Honors B.A. Mathematics, B.A. Physics ’97) always enjoyed math and science, but it was taking a series of physics classes at the U, between his junior and senior year in high school, that changed his life. “I always enjoyed mathematics,” he said. “But physics showed me how mathematics could be used to solve real-world problems. That was tremendously exciting to me and still is.”

The Hyde Family

Today Hyde is managing director in Equities Engineering for the New York office of Goldman Sachs and is responsible for building systems to manage securities inventory and collateral, working closely with teams across Engineering, as well as the Finance, Operations and Securities divisions. “I like being part of a cross-functional team, building relationships and working together to find solutions that impact the organization and the clients we serve,” he said. “The combination of using mathematics and computer science applied to practical problems is very rewarding.”

He joined Goldman Sachs in 2006 and was named managing director in 2010. At Goldman Sachs, Hyde has had a range of responsibilities. He was head of the global Market Risk Technology team within Finance and Risk Engineering. Before that, Hyde led the Trading Strats team for Interest Rate Products in New York as well as the Core Quant Strats team, which developed models, algorithmic trading methods, and pricing infrastructure used by a number of trading desks. (“Strat” is a term that originated with Goldman Sachs to describe individuals that use tools from mathematics and computer science to build financial models In his Core Quant Strat role, Hyde led the build out of the Strat teams in Bengaluru (formerly Bangalore), India, known as “The Silicon Valley of India.”

McKay Hyde, BS'97

Roots in Utah and at the U

Hyde grew up in Salt Lake City and North Salt Lake, graduating from Woods Cross High School. He met his wife, Marie, in an “outstanding” honors class taught by Professor Emeritus Jack Newell (“Education and Identity”), who served as dean and principal architect of the U’s Liberal Education Program. In his first two years at the U Hyde was also active in the U’s music program, playing the trumpet in several university bands—Concert, Marching, Pep, and Jazz.

Hyde gives credit to the education he received at the U with helping prepare him for a career in the financial sector. “I received a tremendous education in physics and mathematics, including research experience working in the Cosmic Ray group and in probability theory. The U provides great value as an institution—a quality education at a reasonable cost,” he said.

He also has great memories of three professors who made a difference for him during his undergraduate years: Davar Khoshnevisan (professor and current chair of the Math Department), Hyde’s undergraduate research advisor in mathematics; Martha Bradley, former dean of the Honors College, and the late Professor Gale Dick, whose “physics lectures were a work of art,” said Hyde.

Using Agile Principles in Undergraduate Research

Hyde believes students should be encouraged to participate in research opportunities early in their undergraduate years, and he applauds the decision of the College of Science to focus on a new program called the Undergraduate Research Initiative. “Research is very different from coursework—it’s really a separate skill,” said Hyde. “Engaging and encouraging undergrads to work together in research opportunities provides a far richer educational experience that really pays off in preparing students for demanding careers.”

To that end, Hyde thinks the same concepts and principles that teams use in Agile software development can effectively be applied to something like the Undergraduate Research Initiative program. “Creating an Agile environment—whether in software development or research—is essentially the same,” said Hyde.

“It involves developing and supporting a culture that encourages a team of people to work toward a common goal. To that end, a large project or research problem can be broken down into smaller tasks. A scrum master or team leader evaluates the special skills and talents of each individual on the team, assigns them to specific tasks, and the team comes together frequently—typically during a daily stand up —over focused sprints—typically 2-3 weeks long—to complete those tasks yielding demonstrable progress at the end of each sprint. By repeating this process, the team improves while building confidence and trust through repeated accomplishment of its goals.”

Previous Academic Career

After earning degrees at the U in 1997 Hyde completed a Ph.D. in Applied and Computational Mathematics from the California Institute of Technology in 2003. Hyde worked as a postdoc in the School of Mathematics at the University of Minnesota and later joined Rice University as an assistant professor of computational and applied mathematics.

When Hyde first left academia to work at Goldman Sachs, he wondered if he would need to dress and act like a “stereotypical banker.” But he discovered it was a much easier transition. “I found smart people from technical fields applying their skills in the area of finance,” he said. “It made me realize the importance of being open to new opportunities—taking the skills and talents you have and using them in different fields or industries to build relationships with others and do meaningful work. That’s really what it’s all about.”

Hyde and his wife, Marie, enjoy living in New Jersey and are the parents of four children: a son studying music at Berklee College of Music; a daughter at Brigham Young University (currently serving a church mission in Peru); and a son and daughter in high school.

 - First Published in Discover Magazine, Fall 2019

Christoph Boehme

Christoph Boehme

Dean Peter Trapa announced that Professor Christoph Boehme has accepted an offer to serve as chair of the Department of Physics & Astronomy, effective July 1, 2020.

"Professor Boehme is deeply knowledgable and committed to the research and educational missions of the department, and has served with distinction as interim chair this year," Trapa said. "Christoph has my full and unwavering confidence and support, as well as that of SVPAA Dan Reed, in leading the department forward."

Previously, Boehme served as associate chair of the department from 2010-2015. His research is focused on the exploration of spin-dependent electronic processes in condensed matter. The goal of his work is to develop sensitive coherent spin motion detection schemes for small spin ensembles that are needed for quantum computing and general materials research.

A child of the 1970s, Christoph was born and raised in Oppenau, a small town in southwest Germany, 30 miles east of the French city of Strasbourg. After obtaining an undergraduate degree in electrical engineering, and committing to 15 months of civil services caring for disabled people (chosen to avoid the military draft), he moved to Heidelberg, Germany in 1994 to study physics at the University of Heidelberg.

In 1997 Boehme won a Fulbright Student Scholarship which brought him to the United States for the first time, where he studied at North Carolina State University and met his wife Kristie. In 2000 Christoph and Kristie moved to Berlin, Germany where they lived for 5 years while he worked for the Hahn-Meitner Institut, a national laboratory. He finished his dissertation work as a graduate student of the University of Marburg in 2002 and spent an additional three years working as a postdoctoral researcher.

Christoph moved to Utah in 2006 to join the Department of Physics & Astronomy as an Assistant Professor. He was promoted into the rank of Associate Professor and awarded tenure in 2010, and promoted to the rank of Professor in 2013. Boehme received the U’s Distinguished Scholarly and Creative Research Award in 2018 for his contributions and scientific breakthroughs in electron spin physics and for his leadership in the field of spintronics.

 

50th Anniversary

GOLDEN Anniversary
1970-2020


July 1, 2020, marks the 50-year anniversary of the College of Science, comprised of the School of Biological Sciences, and Departments of Chemistry, Mathematics, and Physics & Astronomy.

A Brief History

Henry Eyring

When the University of Deseret was founded in 1850 in the Territory of Utah, it was primarily a training school for teachers. The newly formed university taught only a handful of topics, including algebra, astronomy, botany, chemistry, geometry, and zoology. Indeed, mathematics and physical sciences were well represented from the earliest days of the university.

By the 1920s, only six organized schools existed at the U: Arts and Sciences, Business, Education, Engineering and Mines, Law, and a two-year Medical School.

James M. Sugihara, PhD 1947

Between 1948 and 1958, through two reorganizations, the School of Arts and Sciences expanded to become the College of Letters and Science. However, the composition was enormous, including departments of air science, anthropology, botany, chemistry, English, experimental biology, genetics and cytology, history, journalism, languages, mathematics, military science and tactics, naval science and tactics, philosophy, physics, political science, psychology, sociology, speech and theater arts, and zoology.

By the late 1960s, Pete D. Gardner, a prominent organic chemist at the U, had convinced the central administration that mathematics and physical sciences would be most effective if separated from the large, amorphous College of Letters and Science.

Therefore, on July 1, 1970, the College of Letters and Science was replaced by three new colleges: Humanities, Social and Behavioral Science, and the College of Science.

The disciplines of biology, chemistry, mathematics, and physics and astronomy were ideally consolidated in one cohesive academic unit. Gardner was appointed as the first dean of the College and served from 1970 to 1973.

The College of Science utilized seven buildings in 1970, including Chemistry (the north wing was finished in 1968), South Biology (completed in 1969), North Biology (the James Talmage Building), Life Sciences (built in 1920 and former home the of School of Medicine), the John Widtsoe Building (housed both the chemistry and the physics departments), the James Fletcher Building and South Physics. The total faculty consisted of about 80 tenured or tenure-track professors across all four departments.

Modern Day Powerhouse

Today the College of Science is one of the largest colleges within the University of Utah, offering undergraduate and graduate degrees in biology, chemistry, mathematics, and physics and astronomy, plus specialized degrees such as a doctorate in chemical physics.

The College supports nearly 2,000 undergraduate science majors and 475 graduate students and employs 143 full-time tenured or tenure-track faculty. The College also employs hundreds of adjunct and auxiliary faculty, postdoctoral fellows, research assistants, lab technicians, and support staff.

Last year, the College received about $36 million in external research funding, which is nearly seven percent of the University’s total external research revenue.

“The exceptional caliber of the College’s faculty has been a driving force behind the University’s ascension as a world-class research university,” says Peter Trapa.

The College has constructed new educational and research facilities in recent years, including the Thatcher Building for Biological and Biophysical Chemistry and the Crocker Science Center on Presidents Circle. The two buildings combined serve thousands of students each year with professional academic advising, expanded classrooms, and cutting-edge labs and instrumentation.

This year, a new project–the Stewart Building for Applied Sciences – was approved by the Utah legislature to renovate the historic William Stewart building and construct a 100,000 square-foot addition to house the Department of Physics & Astronomy and the Department of Atmospheric Sciences.

The proposed Applied Sciences Center will be 140,729 square-feet in size, consisting of 40,729 square feet of renovated space and 100,000 square feet of new construction. Undergraduate teaching labs, research labs, and classrooms will comprise 90% of the footprint and faculty offices will use 10% of the space. The new facility will support more than 40 faculty members, 200 undergraduate majors, 115 graduate students, and nearly 5,000 students taking STEM courses each year at the U.

Building the Future

As the 21st century unfolds amidst a global pandemic, the importance of science and mathematics will only continue to increase.  Our quality of life and economic future depends on the next generation of scientists. The College of Science is refreshing its strategic plan to further strengthen and enhance its academic and educational programs and its scientific leadership in the nation. Emerging priorities include:

  • Fully implement the Science Research Initiative (SRI) in the Crocker Science Center to serve 500 undergraduates per year with specialized research opportunities.
  • Establish new endowed faculty chair positions in each department, and increase the number of endowed professorships and graduate fellowships.
  • Continue to increase the amount of external research funding received in the College per year.
  • Invest in new and existing research directions to strengthen the College’s faculty.
  • Continue to advance our commitment to diversity, and foster inclusive communities of faculty, staff, and students.
  • Increase the six-year graduation rate of declared Science majors, and increase the total number of STEM graduates at the University.

Pearl Sandick, Associate Dean for Faculty Affairs, has led an effort that has distilled the input of faculty, staff, and students into a coherent plan for the future.

“The College will be prepared to meet the demands of the next 50 years in science education and research,” says Sandick. “We will see our way through the current crisis,  with an enhanced focus and commitment to student success, providing the facilities and rigorous training needed to boost the number of STEM graduates in Utah.”

The College is sincerely grateful for its numerous friends and supporters over the last 50 years. Each gift, large and small, propels the College forward. Please join us to write the next chapter, and the following 50 chapters, in the College of Science.   

Tino Nyawelo

Finding Refuge in Education

 

by Lisa Potter

On a balmy morning in May, 10 newly graduated high schoolers and their families filed into the Sorenson Arts & Education Complex on the University of Utah campus, greeting one another with excited chatter. The parents beamed with pride—many of their sons and daughters were the first in the family to attend college. Tino Nyawelo, assistant professor in the Department of Physics & Astronomy, smiled at the crowd, thinking of his own journey to the university against overwhelming odds. He cleared his throat and quickly won over the room.

Nyawelo was addressing the 2018 cohort of the Refugees Exploring the Foundations of Undergraduate Education In Science (REFUGES) Bridge Program. Based in the Center for Science and Math Education (CSME) at the U, the program aims to encourage underrepresented students to pursue science, technology, engineering, and math (STEM) education at the university level. The seven-week bridge gives freshmen the opportunity to earn credits toward their degree and provides the funding for their tuition, meals, and housing.

Many of the undergraduates are recruited from the REFUGES Afterschool Program, which has provided tutoring, STEM workshops, and college prep and financial aid classes to more than 200 underrepresented students in Salt Lake City. Nyawelo and community partners founded REFUGES to address the challenges faced by refugee youth, minorities, women, and economically disadvantaged students in Utah schools.

Nyawelo, whose family fled violence at the outbreak of the Sudanese civil war, drew on his own experiences to help build REFUGES from the ground up. He fell in love with physics as a high school student in South Sudan, then left the unrest in his country to pursue graduate studies in Europe. When Nyawelo joined the U faculty, he wanted to pay it forward.

Tino Nyawelo

“I see myself in those kids who are brought here as refugees, maybe haven’t had schooling in the camps, and have no English. It’s such a big transition,” explains Nyawelo, director of REFUGES and of diversity & recruitment for CSME. “I’m so passionate about this because I got a lot of help with my education along the way. Mentors and outreach programs in Sudan linked me to my PhD and post-doc studies, and I didn’t pay a penny for my education. Now, I want to give back.”

Bridging the Gap

During the summer bridge program, the students live in the dorms, go on excursions, and tour research labs together to build a strong sense of community. Through the Department of Mathematics and the U’s LEAP learning community, they take two courses that count toward general education credits. During the academic year, bridge students continue LEAP and engage in internship and research experiences. The small class sizes and supportive instructors and administrators help ease the transition.

“A freshman in college has so many things to keep track of, from general education requirements to registration deadlines, financial aid, etc. It can be pretty overwhelming,” says Allyson Rocks, academic coordinator for CSME, who runs logistics for the summer bridge. “The bridge program is a good way to get used to college life instead of getting it all dumped in one semester.”

Both the REFUGES summer bridge and after-school programs have been part of the CSME since 2013. The partnership was a perfect fit; one of the center’s core missions is to increase access to U STEM programming, says Jordan Gerton, director of the CSME. Yet REFUGES is unique in that it sets nontraditional students up for success as undergraduates long before they begin college applications.

“When students aren’t getting a lot of support at home—their family is working, doesn’t know English very well, doesn’t know the school system—they’re much more likely to fall behind, even if they have talent and determination,” says Gerton. “We can’t change the school system, so REFUGES went outside of school to provide that support to keep them moving forward.”

The summer bridge is funded by the Barbara L. Tanner Second Charitable Support Trust, and the CSME and the College of Science support the salaries of the REFUGES staff. The program’s tutors are mainly paid by grants, including from the Department of Workforce Services and the Sudanese Community in Utah. They also receive contributions from individual donors.

Being part of the U helps the students access an amazing team of undergraduate tutors, many of whom went through the REFUGES program themselves. “We hire those students because they look like the REFUGES students. In my experience, I was always unique in my field of theoretical physics. Most of the time, I was the only black person. That’s hard,” says Nyawelo. “Seeing someone who looks like them gives them confidence. They say, ‘If you made it to the U, and you came, like us, as a refugee, then we can make it, too.’ ”

The After-School Program

Like many bridge participants, Jolly Karungi, a member of the 2017 bridge cohort, has had REFUGES in her life for years. Karungi began the after-school program in 2015, a year after moving to Utah following time in a refugee camp in Uganda. Originally from the Democratic Republic of Congo, Karungi, her aunt, and her siblings lived in the camp for three years, then moved to Kampala, Uganda, for another three years before being resettled in Utah.

“When I came here, I didn’t speak any English. I didn’t understand what was going on,” she explains. “I had to catch up. This program helped me a lot.”

The after-school program provides homework tutoring three times per week and includes hands-on STEM workshops for grades 7 through 12. High schoolers take ACT prep courses and financial aid workshops. The program has become a family affair; Karungi’s three younger siblings are participating, and their older brother, Fiston Mwesige, couldn’t be prouder. “They have been through many, many things in the refugee camps. So, when they came here to a completely different system, they needed some guidance to find their way,” says Mwesige. “Now, they spend most of their time thinking about the future, what they can do, how they can help the community, and how they can make the world a better place.”

The years of hard work have already paid off—Karungi recently received a full-ride scholarship to the U from the Alumni Association, and she loved living on campus with her friends over the summer. REFUGES offers more than purely academic support. “People are not just helping you with math and science problems, they’re also helping you with your personal problems,” says Karungi, who is beginning her sophomore year this fall. “It’s the best thing about it. They really care about everyone.”

The REFUGES Afterschool Program helps nontraditional students at two locations: the U campus and the Salt Lake Center for Science Education. This year, all 10 REFUGES high school seniors from the U site were admitted to the U, and seven were offered full-ride scholarships to the U or Westminster College. In all, the group was also offered more than $98,000 in FAFSA scholarships. From the Salt Lake Center for Science Education, 17 seniors were accepted to the U, and the 25 students who completed FAFSA received more than $200,000 in scholarships.

Building Refuges

In 2016, more than 65 million people were forced to flee their homes worldwide, according to the United Nations Refugee Agency. Of those, nearly 22 million were considered refugees. Approximately 60,000 refugees live in Utah, the vast majority of whom live in Salt Lake County, according to the U’s Kem C. Gardner Policy Institute.

To Nyawelo, the numbers are more than just statistics—many of his friends have resettled in Utah, as well as his wife and her family. While pursing graduate studies in Europe, he flew to Salt Lake City frequently, moving officially in 2007 to join the U faculty.

“I knew a lot of refugees in Utah. Some of them were my classmates in South Sudan. I was lucky—I got a scholarship, I went to university. Some of them decided to leave because of a lot of unrest, and they ended up here in Utah. I felt like I was home,” says Nyawelo.

In 2009, he and other members of the refugee community began noticing high rates of school dropouts. After visiting homes, hosting town hall meetings, and organizing a youth summit, a pattern emerged; many refugee youth come to Utah after being in camps for years with little English and intermittent formal schooling. When they arrive here, the school system places them in a grade based on their age, leaving many feeling left behind.

The partners came up with the REFUGES program to help. After winning a grant from the Refugee Services Office, the program expanded to help other communities experiencing similar problems, such as immigrant populations and economically disadvantaged students. There is nothing comparable to REFUGES, explains Gerton, because both Nyawelo and the Utah refugee community are one of a kind.

“This would not be at all possible without Tino…. He built this with his partners from scratch,” says Gerton. “He comes from one of the key refugee communities on Earth, South Sudan. He also happens to be a scientist who also happens to really want to help the community.”

—Lisa Potter is a science writer for University Marketing & Communications.

Engaging STEM Students

ENGAGING STEM STUDENTS


How can we meaningfully engage students in STEM courses? How can we make Science, Technology, Engineering and Mathematics fields (STEM) more inclusive and accessible?

Claudia De Grandi

The retention rate in STEM fields is low—many students who initially plan to pursue a degree in STEM drop out because they don’t identify with the environment they’re exposed to and they don’t enjoy their STEM courses. How can we keep students excited and interested in staying in STEM?

Claudia De Grandi, assistant professor (lecturer) of educational practice in the Physics and Astronomy Department, spends most of her time thinking about how to make her courses more inclusive and how to encourage every student, independently of their background, abilities and identities, to participate and engage in STEM fields successfully.

“I love teaching because of its challenges,” said De Grandi. “Something that worked well in one place may not work in another setting. It’s the role of the teacher to listen to the students and adapt to be in tune with them. My goals are to be equitable and inclusive, although I don’t always achieve it.

Unfortunately, we’re all biased, and it’s our responsibility to keep trying to understand how it feels to be someone else.” De Grandi tries her best to consider the hurdles and inequities each student has to overcome to succeed in school. She has taught at Yale University, Housatonic Community College (Bridgeport, Conn.), and now at the U.

Her teaching style relies on the adoption of evidence-based teaching practices and is informed by the latest results from Physics Education Research (PER). PER is the field of physics that aims to understand and assess how students learn and make sense of physics concepts and identify successful teaching practices and instructional approaches.

In support of previous PER research, De Grandi has found that using active learning techniques and providing opportunities to promote group work are key to student success. “I started implementing group quizzes a few years ago—now I also do group exams. I prompt student reflections (on exam mistakes, performance, and preparation) and on their mindset (growth or fixed),” said De Grandi. “I do like to surprise my students by asking them to talk about something not related to physics. Learning is not just about content—I work to make sure my students are comfortable sitting in class so they can focus on learning.”

Here is what one student said about De Grandi’s teaching: “Claudia is amazing, and she’s one of the main reasons I enjoy coming to class. Her drawings are cute, and her examples are always fun and silly. She includes everyone and really knows how to make a class fun. I was worried I’d hate physics but she definitely made me love it. “

De Grandi grew up in Milan, Italy, where she received her bachelor’s and master’s degrees in physics from the University of Milan. In 2011, she obtained a Ph.D. in theoretical condensed matter physics from Boston University.

She was at Yale University first as a research postdoc and continued as a teaching postdoc through the Yale Center for Teaching and Learning. She joined the U in July 2018 as an assistant professor (lecturer) in the Department of Physics & Astronomy. De Grandi has been actively involved in faculty training on teaching for the past five years and has served as a facilitator and leader for the Summer Institutes on Scientific Teaching (https://www.summerinstitutes.org/) at several U.S. campuses as well as at University College London. She is currently collaborating with the U’s Center for Science and Mathematics Education to bring a Summer Institute to the U next spring. Interested faculty from the College of Science will be invited to participate.

At the U, De Grandi has redesigned and led the Teaching Assistant (TA) Orientation for Physics and Astronomy graduate students. The training focuses on preparing incoming graduate students to teach by promoting group work, being aware of student diversity, and fostering a welcoming environment.

“This spring I’ll be teaching a new course called “Being Human in STEM,” said De Grandi. “Although I’ve taught this course before at Yale, this will be my first time teaching it here, along with a team of colleagues in math, chemistry, and astronomy.”

The course combines academic inquiry and community engagement to investigate diversity and climate within STEM. Students will examine how diverse personal backgrounds shape the STEM experience both at the U and nationally. “The goal is to start a dialogue among STEM faculty and students to identify issues with the STEM environment and develop interventions to help ameliorate these problems,” said De Grandi. “I look forward to teaching the course, and learning, from and with the students.”

 - by Michele Swaner
  First Published in Discover Magazine, Fall 2019