Planetarium Internship

Evans & Sutherland Internship


Keegan Benfield, Christian Norseth, Ethan Lamé, and Carson Brown.

U students create new presentations during planetarium internship.

This past summer Keegan Benfield, Ethan Lamé, and Christian Norseth, in the U’s Department of Physics & Astronomy, participated in an internship program at Evans & Sutherland, a Cosm company.

Cosm/E&S, considered the world’s first computer graphics company, has developed advanced computer graphics technologies for more than five decades.

Their technology developed Digistar 7, the world’s leading digital planetarium system, with full-dome programs and production services, giant screen films formatted for full-dome theaters, premium-quality projection domes, and theater design services.

The Physics Department had an opportunity to chat with the students about the internship.

Cyri Dixon

How did you learn about the internship?

  • Benfield - senior: physics, mechanical engineering
    I learned about it through an email from my U of U physics advisor, Cyri Dixon, the day before the internship closed. The email introduced me to Cosm. I was excited and applied right away.
  • Lamé - senior: physics
    I first heard about the internship with Cosm from Cyri Dixon. It sounded interesting, so I thought I might as well apply.
  • Norseth - graduate 2021: physics
    My advisor, Dan Wik, told me about the internship during one of our meetings.

What problem were you trying to solve at Cosm/E&S?

Ethan Lamé

  • Lamé
    We were given the task of creating shows using their software, Digistar.  We each picked a topic to research, and then we used Digistar to program the show as if it were to be shown to a planetarium audience.
  • Norseth
    My understanding is that Cosm/E&S put a lot of effort into adding accurate astronomical data and surveys into their planetarium software, and they wanted a way to show planetariums how to use the data.
  • Benfield
    The astrophysics interns were assigned two projects: designing two presentations on astrological objects and compiling a research paper that complemented the productions. The goal was to demonstrate the Digistar 7 system capabilities.

How did you go about developing a solution?

Christian Norseth

  • Norseth
    I selected two topics and researched them. I chose Extrasolar Systems and Stellar Formation Regions. We had a general outline of what kind of information we should include in our 5-10-minute planetarium show. I compiled a lot of information and then wrote out a “storyboard” with each element I wanted to include. I then designed the show in Digistar by writing automated scripts in the Digistar Command Language that controlled where you were in space and other visual elements on the dome. We could test our shows out on a projector dome that you would have in a planetarium.
  • Benfield
    During the first week, we were instructed on how to use the Digistar 7 systems and were given a general tour of the company facilities, including their three domes. We learned the operations and usage of the medium dome so that we could test our presentations. We used the remaining nine weeks to research, develop code, and collaborate on the shows.
  • Lamé
    After the first week of training using the Digistar software, we all jumped into using the scripting language to code our own movements and animations. After I did some research on my topic, I created a sort of story that I wanted to tell the audience, and then used the Digistar code to show the audience exactly what I wanted to show them.

Did you collaborate while still working on your own projects?

Keegan Benfield

  • Lamé
    We each worked on different topics throughout the internship, but we still helped each other. There are a lot of functionalities that the Digistar software has that we found through experimentation on our own topics, so if one of us had a question on how to do something, the others would often have an answer.
  • Benfield
    Each astrophysics intern selected their own two topics to investigate and research on their own time. However, we regularly met at the offices to discuss our code, receive help in coding, and peer review each presentation. We could easily rely upon each other when a problem occurred. Due to the variety of options that the Digistar 7 systems offered, each intern developed a unique method of generating various celestial objects so that each of our presentations were different.
  • Norseth
    We all worked on our own shows individually, but we helped each other figure things out. We would help each other with framing certain information or give suggestions on how to create an element in our shows.

Tell us about your daily routine.

    Evans & Sutherland - Digistar 7

  • Benfield
    My work day usually started around 9 a.m. and ended at 3 p.m. The day was broken up into sections depending on the number of meetings I had that day. For the days with fewer meetings, I spent my time in the computer lab or medium dome, developing my presentations and aiding or receiving coding aid from other interns. We also reviewed each other’s content in the dome. On days with multiple meetings, I spent my time preparing and conducting a little bit of coding.When I wasn’t at Cosm’s facilities, I was at the Marriott Library, conducting online research or scouring the library for research books.Each intern was assigned a Cosm buddy—an older company member. I met bi-weekly with my buddy to discuss any problems and to review my and practice my presentations.We did have internship week, where all of the interns traveled to the facilities here in Utah. We had multiple activities, ranging from an airplane competition, designing a Cosm event, and having dinner and a movie in the large dome. We also received tips about hiring and using LinkedIn as a networking tool.
  • Norseth
    Every week I’d come into the office on Monday, Wednesday, and Thursday and get to work in a shared computer space. If I needed to test any content on the dome, I’d export my scripts and head down to the bottom floor where I could use the projector dome.
  • Lamé
    Typically, I would arrive just before 9 a.m. and jump into working on whatever work I had from the previous day. There were occasionally meetings during the day that we were able to join from our laptops, but for the most part, we stayed in the computer lab, working on our shows. Most people were there most days, so I was rarely the only one in the room. Often, we would go to a planetarium projection dome in the office and play our shows to see how the movements/animations worked and fix any bugs that popped up. I would often be doing research on the internet while working on these projects to make sure that the information I had was correct and to search for more engaging stories to tell.

Future plans?

Daniel Wik

  • Norseth
    I’m hoping to attend graduate school in astrophysics. This is my second year applying, but I should have a published paper under my belt this time. After my Ph.D., I’m not sure what I’ll do, probably try to become a professor or conduct some kind of astronomy-related research.
  • Lamé
    I’m planning to apply to some graduate school programs in astrophysics, and maybe even an engineering program or two. I’d love to dive deeper into a related field in grad school and once I know that I enjoy working with that skill set, eventually move into an industry job.
  • Benfield
    I love learning and developing skills that are desirable for my career path. I want to enter the field of defense contractors or work at a national lab. I also plan on continuing my education by earning a master’s or a Ph.D. in engineering, computer science, and physics. Eventually, I want to start my own company based on some inventions that I have semi-planned out.

 

 

About the internship

Melinda Orms

According to Melinda, Orms, Product Manager at Cosm, the Astrophysics Internship program with the University of Utah, Department of Physics & Astronomy, began after Dr. Anil Seth, Associate Professor, reached out to Cosm in the spring of 2022. Cosm invited Seth and his colleagues to visit the company’s Experience Center. During the visit, faculty had a tour of the system and its capabilities. Cosm talked about its desire to collaborate and the idea to have interns from the U Astrophysics program first surfaced.

“Our summer internship registration period had just ended here at Cosm, said Orms. “However, Karen Klamczynski, our training director, and I wrote up a plan for the Astrophysics Internship program, and we were able to get special approval to move forward at a very late date. Because a significant amount of training was involved, we required four interns in order to launch the program. We sent the information to Daniel Wik, Assistant Professor in the U’s Astrophysics program. We gave him a deadline of a few days to secure candidates for the program. I don’t know how, but he did it, but we ended up with six applicants and filled our four positions.”

The company-wide internship had 13 participants, located in Salt Lake City, Los Angeles, and New York. They filled positions in many areas of the company, including technical writing, business development, design, and sales, etc.

Digistar is the world’s most advanced planetarium system, and Cosm’s customers teach science and astronomy in facilities all around the world. The company wanted to make it easier for their customers to present topics that utilize the wealth of astronomical data that is pulled into Digistar.

“We had Ethan, Christian, and Keegan take an abbreviated training course to learn how to use our system,” said Orms. “They selected and researched topics. For each topic, they created Digistar visualizations (5-10-minute shows) and supporting information and materials. Their projects were shown to our customers from all around the world. What they created will be made available to our customers for use in their planetariums. We finished the internship with an evening in the dome where they presented their lessons to friends and family and some of their professors.”

Cosm plans to continue and, hopefully, expand, its Astrophysics Internship program with the U’s Department of Physics & Astronomy. The company is looking forward to selecting more interns in January and are discussing plans for hosting a lecture in the dome.

 

by Michele Swaner , first published @ physics.utah.edu.

STAR-X Proposal

STAR-X Proposal


Daniel Wik

Astrophysicist Dan Wik proposal selected by NASA

NASA has selected four mission proposals submitted to the agency’s Explorers Program for further study. U astrophysicist Dan Wik is a member of the STAR-X Proposal Team, one of the two Astrophysics Medium Explorer missions selected by NASA for further study. The proposals include missions that would study exploding stars, distant clusters of galaxies, and nearby galaxies and stars.

Adapted from a news release by NASA

Two Astrophysics Medium Explorer missions and two Explorer Missions of Opportunity have been selected to conduct mission concept studies. After detailed evaluation of those studies, NASA plans to select one Mission of Opportunity and one Medium Explorer in 2024 to proceed with implementation. The selected missions will be targeted for launch in 2027 and 2028, respectively.

Daniel Wik, assistant professor in the Department of Physics & Astronomy at the University of Utah, is a member of the STAR-X Proposal Team, one of the two Astrophysics Medium Explorer missions selected by NASA for further study. For more information about Wik and the STAR-X team, visit: http://star-x.xraydeep.org/.

“The fact that STAR-X has passed this competitive milestone is a testament to the hard work and vision of both the hardware and science teams, and it has been enormous fun for me to contribute to this effort and collaborate with such a talented and convivial group of scientists. I hope this collaboration will continue for years,” said Wik.

Daniel Wik

Wik is an X-ray astronomer, who primarily works with observations conducted by the NuSTAR mission, along with data from other X-ray observatories, such as XMM-NewtonChandra, and the soon-to-launch XRISM, studying galaxies and galaxy clusters. Before joining the U in 2017, he was a research scientist at the NASA Goddard Space Flight Center outside of Washington, D.C.

“NASA’s Explorers Program has a proud tradition of supporting innovative approaches to exceptional science, and these selections hold that same promise,” said Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate at NASA Headquarters in Washington. “From studying the evolution of galaxies to explosive, high-energy events, these proposals are inspiring in their scope and creativity to explore the unknown in our universe.”

NASA Explorer missions conduct focused scientific investigations and develop instruments that fill scientific gaps between the agency’s larger space science missions. The proposals were competitively selected based on potential science value and feasibility of development plans.

The two Medium Explorer teams selected at this stage will each receive $3 million to conduct a nine-month mission concept study. Astrophysics Medium Explorer mission costs are capped at $300 million each, excluding the launch vehicle. The selected proposals are:

UltraViolet EXplorer (UVEX)

  • UVEX would conduct a deep survey of the whole sky in two bands of ultraviolet light, to provide new insights into galaxy evolution and the lifecycle of stars. The spacecraft would have the ability to repoint rapidly to capture ultraviolet light from the explosion that follows a burst of gravitational waves caused by merging neutron stars. UVEX would carry an ultraviolet spectrograph for detailed study of massive stars and stellar explosions.
  • Principal investigator: Fiona Harrison at Caltech in Pasadena, California

Survey and Time-domain Astrophysical Research Explorer (STAR-X)

  • The STAR-X spacecraft would be able to turn rapidly to point a sensitive wide-field X-ray telescope and an ultraviolet telescope at transient cosmic sources, such as supernova explosions and active galaxies. Deep X-ray surveys would map hot gas trapped in distant clusters of galaxies; combined with infrared observations from NASA’s upcoming Roman Space Telescope, these observations would trace how massive clusters of galaxies built up over cosmic history.
  • Principal investigator: William Zhang at NASA’s Goddard Space Flight Center in Greenbelt, Maryland

The two Mission of Opportunity teams selected at this stage will each receive $750,000 to conduct a nine-month implementation concept study. NASA Mission of Opportunity costs are capped at $80 million each. The selected proposals are:

Moon Burst Energetics All-sky Monitor (MoonBEAM)

  • In its orbit between Earth and the Moon, MoonBEAM would see almost the whole sky at any time, watching for bursts of gamma rays from distant cosmic explosions and rapidly alerting other telescopes to study the source. MoonBEAM would see gamma rays earlier or later than telescopes on Earth or in low orbit, and astronomers could use that time difference to pinpoint the gamma-ray source in the sky.
  • Principal investigator: Chiumun Michelle Hui at NASA’s Marshall Space Flight Center in Huntsville, Alabama

A LargE Area burst Polarimeter (LEAP)

  • Mounted on the International Space Station, LEAP would study gamma-ray bursts from the energetic jets launched during the formation of a black hole after the explosive death of a massive star, or in the merger of compact objects. The high-energy gamma-ray radiation can be polarized, or vibrate in a particular direction, which can distinguish between competing theories for the nature of the jets.
  • Principal investigator: Mark McConnell at the University of New Hampshire in Durham

The Explorers Program is the oldest continuous NASA program. The program is designed to provide frequent, low-cost access to space using principal investigator-led space science investigations relevant to the Science Mission Directorate’s astrophysics and heliophysics programs.

Since the launch of Explorer 1 in 1958, which discovered the Earth’s radiation belts, the Explorers Program has launched more than 90 missions, including the Uhuru and Cosmic Background Explorer (COBE) missions that led to Nobel prizes for their investigators.

The program is managed by NASA Goddard for NASA’s Science Mission Directorate in Washington, which conducts a wide variety of research and scientific exploration programs for Earth studies, space weather, the solar system, and the universe.

For more information about the Explorers Program, visit: https://explorers.gsfc.nasa.gov.

first published @ physics.utah.edu

 

>> HOME <<

 

NuFact 2022

NuFact 2022


Professor Pearl Sandick, Assistant Professor Yue Zhao, and Professor Carsten Rott.

Physics Department hosts NuFact International Workshop at Snowbird

Professor Carsten Rott and colleagues from the Department of Physics & Astronomy recently hosted an international workshop on neutrinos at Snowbird. Known as NuFact, the workshop brought together experimentalists, theorists, and accelerator physicists from all over the world to share their knowledge and expertise in the field. NuFact had more than 150 in-person participants and numerous virtual contributions.

A neutrino is a subatomic particle that is similar to an electron but has no electrical charge and a very small mass. Neutrinos are one of the most abundant particles in the universe, but they are difficult to detect because they have very little interaction with matter.

Professor Pearl Sandick and Assistant Professor Yue Zhao served as co-organizers of the conference. The team also included Rebecca Corley and other graduate students, who were instrumental in hosting the event.

 

Carsten Rott

“NuFact is one of the most important conferences in the field of neutrino physics,” said Rott. “It was an honor and a great opportunity that the scientific program committee selected Utah as the venue for the 23rd conference in this workshop series.”

 

One of the pre-workshops called “Multi-messenger Tomography of the Earth” encouraged experts from earth science and neutrino physics to explore the possibility of using neutrinos to understand the composition of the inner Earth. “I enjoyed the open exchange of ideas in this interdisciplinary workshop,” said Rott. “This work may one day significantly enhance our understanding of the Earth’s composition and dynamics.”

At this year’s workshop, a new working group was created called Inclusion, Diversity, Equity, Education, & Outreach (IDEEO). “We’re excited to establish this as a permanent working group associated with the NuFact conferences,” said Sandick. “This year’s sessions were incredibly productive. We already see meaningful, positive changes, and I anticipate more to come as our scientific community continues to work on IDEEO.”

Dean Peter Trapa delivers opening remarks.

The conference was supported by the University of Utah (Department of Physics & Astronomy, the College of Science, the VPR Office, the National Science FoundationCaen Technologies Inc., the Center for Neutrino Physics @ Virginia Tech, and MPDI Instruments.

 

by Michele Swaner, first published @ physics.utah.edu.

College Rankings

College Rankings


U.S. News & World Report has released their 2022-2022 National University Rankings. The University of Utah is now ranked No. 1 in Utah and No. 42 nationally among public universities.

The College of Science fared even better. National rankings for public universities put Biology at No. 13, Chemistry at No. 20, Mathematics at No. 22, and Physics & Astronomy at No. 47.

There are many factors used to determine a school’s final ranking in the U.S. News & World Report but one factor that is not considered is cost. When cost is factored, there are few universities that challenge the University of Utah.

>> HOME <<

Star Trek

To boldly know what no one has known before.


According to Captain James T. Kirk, space is the final frontier (although oceanographers might have something to say about that). Beyond the Earth’s atmosphere, there is a vast area of the Universe that we will likely never completely understand, despite the best efforts of mathematicians, physicists and astronomers.

However, rather than being a source of frustration, space represents infinite possibility, which is why astronomers like Dr Gail Zasowski, an astronomer based at the University of Utah in the United States, enjoy what they do in their professional lives. Gail is an astronomer with a particular interest in understanding where and when our Milky Way galaxy formed its 100 billion stars. Her research will help us understand how the infant Milky Way grew into the massive spiral galaxy that we see today.

WHAT ARE OUR CURRENT LIMITATIONS REGARDING UNDERSTANDING THE HISTORY OF OUR GALAXY?
Ironically, the main limitation to our understanding is closely related to the main advantage: that we are embedded inside the Galaxy. It can be thought of as the difference between looking at a map of a city and standing on a street in that city. “Looking at a map is like looking at other galaxies – we can see the overall shape and structure, where the business and residential areas are, and so on,” explains Gail. “But standing in that city has historically been like studying the Milky Way – we can’t see the pattern of streets or what the next neighbourhood looks like, but we can see the people and the shop windows, smell the smells, hear the sounds.”

However, in recent years, astronomers have been able to peer farther into the Milky Way than ever before. A lot of the difficulty in observing our galaxy is because of the thick clouds of gas and dust that fill the disc part of the Milky Way and block the starlight behind them. But some surveys, including the second generation of the Apache Point Observatory Galactic Evolution Experiment in the Sloan Digital Sky Survey III and IV projects, use infrared light to study the stars, which are much less affected by the intervening dust. The problem of perspective still exists, but astronomers are getting closer to being able to characterise the Milky Way in the same way as external galaxies.

Image of the Milky Way for the APOGEE project.

WHY IS THE MILKY WAY SO IMPORTANT?
We can observe the Milky Way at a higher resolution than other galaxies because of our proximity to it. Although there are some challenges as previously noted, we can observe the small-scale building blocks of galaxies, such as individual stars and small gas clouds. “These observations have shaped our understanding of a large fraction of astrophysics, from what happens in the interiors of stars to the ways a whole galaxy can change over billions of years,” says Gail. “We then apply this understanding to interpret our observations of other galaxies – where we can’t see things at the same level of detail – and create a picture of how galaxies in the Universe, and the Universe itself, have evolved since shortly after the Big Bang.”

The ’big-picture’ questions Gail and her team are trying to answer include: “Where and when did the Milky Way’s stars form?”, “What are the main sources of heavy elements in today’s Milky Way stars, and when and how were they synthesised?” and “What is the best way to apply what we learn in our Galaxy to understanding what happens in other galaxies?”

Addressing these questions involves answering smaller ones, like: “How old are the stars in a specific part of the Milky Way and what is their chemical makeup?”, “What series of evolutionary events could give us this pattern of stellar ages and chemistry?”, and “How does the gas and dust between the stars move around throughout these events?”

 

first published @ futurum

*This article was produced by Futurum Careers, a free online resource and magazine aimed at encouraging 14–19-year-olds worldwide to pursue careers in science, tech, engineering, maths, medicine (STEM) and social sciences, humanities and the arts for people and the economy (SHAPE). For more information, teaching resources, and course and career guides, see www.futurumcareers.com

 

METHODS, FINDINGS AND SUCCESSES
To uncover what elements are in a star, Gail and her team are part of a larger team that measures the star’s light at different wavelengths. Atoms of different elements absorb that light at different wavelengths, so models are fitted to the pattern of absorption compared with wavelength to determine how much of each element is present in the star. These same models also account for the star’s temperature, surface gravity and other properties that are necessary for computing distances and ages.

2022 Meeting of the American Astronomical Society

Gail’s group has worked hard to link detailed measurements that can be made in the Milky Way with global measurements that can be made in other galaxies (which are less detailed but cover a higher number of galaxies in different environments with different histories). “It has been very exciting to see many different analyses on stars in different parts of the Milky Way come together in a comprehensive picture of where and when its stars formed, including the influence of gas accretion events billions of years ago, which strongly affected the regions near the Sun (but which probably happened before the Sun formed!),” explains Gail.

“It has also been extremely gratifying to see the students and post-doctoral researchers in my group taking ownership of their work and leading their own projects, often collaborating with each other and with very little input from me. I value the success of the scientific work for increasing our understanding of the Universe and for launching the careers (in and out of academia) of so many hard-working scientists.”

WHAT ARE THE LONG-TERM PLANS FOR GAIL’S RESEARCH?
Many of the upcoming datasets – including for the SDSS-V, the next data releases from ESA’s Gaia mission and NASA’s Roman Space Telescope – will provide ever-larger troves of measurements of the stars in our Milky Way and nearby galaxies. “I am excited to work on recreating the history of our galaxy – playing the movie of its life, backwards – by mapping out where and when the stars form, how they release their new elements back into the galaxy and how those new elements move around between the stars before being incorporated into the next stellar generations,” says Gail. “I love learning things that no one has ever known before.”

Astronomy is something that surely interests all of us to some degree and is a field that is ready for new discoveries. Only around 400 years ago, Galileo was chastised for championing Copernican heliocentrism (the belief that the Earth revolved around the Sun). This demonstrates just how ready the field of astronomy is when it comes to new and novel ideas that could fundamentally change our understanding of the ways things are.

The 2.5-metre Sloan Telescope (lower right) observing the centre of the Milky Way.

WHAT DOES GAIL FIND MORE REWARDING ABOUT HER RESEARCH IN ASTRONOMY?

Perhaps unsurprisingly, Gail loves learning things that no one has ever known before, such as seeing a particular pattern or correlation for the first time. In many ways, astronomy is not centred on answering questions, but on asking questions that no one has thought to ask before. “What I find particularly rewarding is getting to learn all these things about some of the biggest, most beautiful and most unfathomable objects in the Universe,” explains Gail.

“By ‘unfathomable’ I don’t mean un-understandable, but rather that we can’t truly picture their size, we can’t hold something that big or that hot or that old in our minds. Even stars, which we see every night with our eyes, and which are on average rather small and cool compared to other things in the Universe – our brains just aren’t set up to imagine those regimes.”

WHAT CHALLENGES WILL THE NEXT GENERATION OF ASTRONOMERS FACE?
There are always technical challenges: think about the difficulties of studying space without a telescope! Then think about the first telescopes and how primitive they were. Now think about the telescopes that we have presently and consider how they will one day be seen as primitive! It is a basic fact that we will be able to understand more about space with time simply because of access to improved and better tools.

But then, there are also data challenges. “Our datasets, observational and simulated, are getting increasingly larger, and being able to store this information and access it already requires specialised knowledge,” says Gail. “In addition, data is more complex, so understanding how to put all that data into a meaningful physical understanding is a challenge that is unlikely to be solved any time soon, but it’s exciting to think that one day it will be.”

HOW HAVE OUTREACH AND EDUCATION INITIATIVES, AT THE UNIVERSITY OF UTAH AND ELSEWHERE, HELPED ENCOURAGE YOUNG PEOPLE TO STUDY STEM?
One of the things the team tries to do with these kinds of programmes is to emphasise that science is something that shows up in everyday life. It’s not some obscure knowledge that only genius people in lab coats have access to. It affects all of us every day and is something we can all learn about. “We try to do fun projects that show how scientific knowledge, maths and computing manifest themselves in objects and activities that everyone can contribute to,” explains Gail.

“We want to convey the idea that studying STEM prepares people for a wide range of things in life – not just jobs! If you want to study science as a career, you can do it, even if you don’t fit the stereotypical image of what, say, the movies tell us a ‘scientist’ looks like.”

Adding the sticker to the first APOGEE instrument at APO.

WHAT WERE YOUR INTERESTS WHEN YOU WERE GROWING UP?
I’ve always loved reading, especially science fiction and historical novels. In school, I enjoyed science and language classes the most – I love learning how systems work, both the physical system of the Universe and human systems of language and communication. I’m also an avid outdoor enthusiast and love camping and spending time in nature, especially here in Utah, with its red-rock canyons, deserts and incredibly dark night-time skies!

WHO OR WHAT INSPIRED YOU TO BECOME AN ASTRONOMER?
It wasn’t until I was at university that I understood that ‘astronomer’ was a job that people could have (my earlier schools didn’t really push science as a career). I took an introductory astrophysics course during my first year at university, and the combination of the enormity and beauty of the Universe, coupled with actually being able to understand pieces of it with maths and physics, was irresistible.

WHAT ATTRIBUTES HAVE MADE YOU SUCCESSFUL AS AN ASTRONOMER?
Being detail-oriented has been very helpful, I think. A lot of my day-to-day work involves writing code, reading and writing papers, and understanding all the nitty-gritty details of a dataset that might influence our interpretation of our results. Not being able or interested in submerging oneself in those details would make the daily work much more challenging.

Being a people person has also been helpful. Much of the astronomical progress currently is made in collaboration with other people, as simulations and datasets get larger and more complex, and just require so many more individuals to create them. I love working with a team of people on a common project and doing my part to make sure the team is a fun and inclusive place to be, which almost always leads to better science too.

WHAT ARE YOUR PROUDEST CAREER ACHIEVEMENTS SO FAR?
I am very proud of the scientific knowledge that my team and I have contributed to our understanding of the Universe. I am also proud of what I have been able to do in the classroom and broader environment in the field and my department. Both of these were recognised with a Cottrell Scholar Award in 2021, which honours early-career faculty who have shown excellence in both research and education.

HOW DO YOU DEAL WITH CHALLENGES AT WORK?
Deep breaths! Very few things are solved well if people are worked up or angry. If the science or the data are challenging, I take a step back and think about the root of the problem. Taking a walk or working on something else for a while can be very useful. It’s helpful to remember that the Universe isn’t trying to be difficult! Often, things are just more complicated than we anticipated they would be, and our job is to make our treatment of the data more sophisticated in response.

If there are tensions with people causing challenges, I take a similar approach: focus on why people are acting like they are, not the effects on me or my feelings. If someone is behaving inappropriately, that does need to be addressed, but often the root of the conflict is a misunderstanding or miscommunication that a calm, neutral message can resolve.

Betty Vetter Award

Betty Vetter Award


Ramón Barthelemy

Ramón S. Barthelemy, Assistant Professor of Physics and Astronomy at the University of Utah, has been awarded the 2022 WEPAN (Women in Engineering ProActive Network) Betty Vetter Research Award for notable achievement in research related to women in engineering. The award is named in memory of Betty M. Vetter, long-time director of the Commission on Professionals in Science and Technology, who served as the first treasurer of WEPAN and was a founding member of the Board of Directors.

Barthelemy is an early-career physicist with a record of groundbreaking scholarship and advocacy that has advanced the field of physics education research as it pertains to gender issues and lesbian, gay, bisexual, and transgender (LGBT)+ physicists.

“WEPAN is an impactful member society that hosts the ARC STEM Equity Network, an intersectional effort supporting equity research in STEM,” said Barthelemy. “I am humbled and honored to have my work recognized by an organization that works so tirelessly to enhance inclusion with considerable focus on the various intersections of identity one can have. I’m looking forward to continuing to work with both WEPAN and the ARC STEM Equity Network.”

The field of physics struggles to support students and faculty from historically excluded groups. Barthelemy has long worked to make the field more inclusive—he has served on the American Association of Physics Teachers’ (AAPT) Committee on Women in Physics and on the Committee on Diversity—and was an early advocate for LGBT+ voices in the AAPT. He co-authored “LGBT Climate in Physics: Building an Inclusive Community,” an influential report for the American Physical Society, and the first edition of the “LGBT+ Inclusivity in Physics and Astronomy Best Practices Guide,” which offers actionable strategies for physicists to improve their departments and workplaces for LGBT+ colleagues and students.

Barthelemy recently served as co-lead author on a study of LGBT+ physicists that detailed the difficulties, harassment, and other behaviors that make them leave the profession.

“LGBT+ people feel shunned, excluded and are continually having to readjust and twist themselves to fit into the physics community,” said Barthelemy. “LGBT+ people are inherently a part of this field. If you want physics to be a place that anyone can participate, we have to talk about these issues.”

Gender has a big impact on a person’s perception of their environment. While about 15% of LGBT+ men reported an uncomfortable or very uncomfortable experience, 25% of women and 40% of gender non-conforming people reported similar experiences.

“The study tells us that support has to be available in the entire institution,” said Barthelemy. “LGBT+ individuals in all departments have to be continually coming out when we engage with the broader campus community and new people, since our LGBT identity is seldom assumed. By making our presence known, we can help encourage greater equity, diversity and inclusion throughout the institution.”

U of U PRIDE!

In 2019, Barthelemy joined the U’s College of Science as its first tenure-track faculty focusing on physics education research (PER), a field that explores how people learn the content and culture of physics. Since arriving, he has built a program that gives students rigorous training in physics concepts and in education research, qualities that prepare students for jobs in academia, education policy, or general science policy. He founded the Physics Education Research Group at the University of Utah (PERU), where he and a team of postdoctoral scholars and graduate and undergraduate students explore how graduate programs policies impact students’ experience, long-term studies of the experience of women in physics and astronomy and of students of color in STEM programs, and understanding the impacts of a sense of belonging on a student’s performance in introductory STEM courses.

“We talk about inclusivity and diversity in the classroom, but there needs to be more research about what that means. We look at various aspects of interactive classrooms and how it impacts their content learning outcomes,” said Barthelemy. “If you feel like you belong in the classroom, if you feel comfortable raising your hand, you can participate in groups, teaching and learning from peers—that’s an example of inclusivity, looking at people’s sense of belonging.”

The research has implications beyond the classroom—Barthelemy uses the findings to inform and develop policies and best practices to support people from historically excluded groups in physics. “It helps us teach better, but also understanding the culture of physics has implications in the quality of research done in national labs, for example, that inevitably impacts people across the country,” he said.

Barthelemy has had an untraditional journey to academia. He earned his Bachelor of Science degree in astrophysics at Michigan State University and received his Master of Science and doctorate degrees in PER at Western Michigan University. “Originally, I went to graduate school for nuclear physics, but I discovered I was more interested in diversity, equity, and inclusion in physics and astronomy. Unfortunately, there were very few women, People of Color, LGBT or first-generation physicists in my program,” said Barthelemy, who looked outside of physics to understand why. “I found this quite curious,” he said.

In 2021, Barthelemy received the Doc Brown Futures Award, an honor that recognizes early career members who demonstrate excellence in their contributions to physics education and exhibit excellent leadership.

Barthelemy’s work has also been recognized with external funding to complete his projects. In 2020, he and his U colleagues Jordan Gerton and Pearl Sandick were awarded $200,000 from the National Science Foundation to complete a case study exploring the graduate program changes in the U’s Department of Physics & Astronomy. In the same year, Barthelemy received a $350,000 Building Capacity in Science Education Research award to continue his longitudinal study on women in physics and astronomy and created a new study on People of Color in U.S. graduate STEM programs. Lastly, Barthelemy was selected to conduct a literature review on LGBT+ scientists as a virtual visiting scholar by the ARC Network, an organization dedicated to improving STEM equity in academia.

In 2014, Barthelemy completed a Fulbright Fellowship at the University of Jyväskylä, in Finland where he completed research looking at student motivations to study physics in Finland. In 2015, he received a fellowship from the American Association for the Advancement of Science Policy in the United States Department of Education and worked on science education initiatives in the Obama administration. After acting as a consultant for university administrations and research offices, he began to miss doing his own research and made the decision to come to Utah.

About WEPAN
Based in Washington, D.C., WEPAN was founded as a non-profit educational organization in 1990. It is the nation’s first network dedicated to advancing cultures of inclusion and diversity in engineering higher education and workplaces. The WEPAN Awards honor key individuals, programs, and organizations for accomplishments that underscore WEPAN’s mission to advance cultures of inclusion and diversity in engineering education and professions. WEPAN Award honorees demonstrate extraordinary service, significant achievement, model programs, and exemplary work environments.

by Michele Swaner, first published @ www.physics.utah.edu

Outstanding Advisor

Outstanding Advisor


Cyri Dixon has been named a NACADA Outstanding New Advisor.

Cyri Dixon, the Undergraduate Academic Advising Coordinator for the Department of Physics & Astronomy, has won the Outstanding New Advisor Award – Primary Role Category – from the National Academic Advising Association (NACADA). Award selection is extremely competitive and designed to honor and recognize professionals who have made significant contributions to the field of academic advising in higher education. Candidates are nominated by their institution, and each application is carefully reviewed by NACADA committee members. All outstanding advisor nominations include a comprehensive list of the nominee’s professional qualifications, academic accomplishments, letters of support, and documented advising success.

Cyri Dixon

“I am grateful to work with such fantastic students, staff, and faculty. Advising is challenging, but working with my wonderful students makes it all worth it.”

 

“I am very honored to receive this award,” said Dixon. “I am grateful to work with such fantastic students, staff, and faculty. This award really highlights the strides we have been able to make in our department to create a better student experience and build a community where all students feel welcome and successful. Advising is challenging, but working with my wonderful students makes it all worth it.”

Dixon was previously recognized for her exemplary advising work when she was named Outstanding New Academic Advisor in 2021 by the University of Utah Academic Advising Community (UAAC). She serves as the only undergraduate advisor for the department and has proven to be a valuable resource to undergraduate physics students in all areas of academic advising. She has 236 physics major students that she meets with regularly, and she takes pride in knowing each student by name. She helps each develop a course plan that fits their interests, and she connects them to research and internship opportunities, campus resources, and the department community.

Here are comments from the University of Utah’s President’s Office, faculty, staff, and students about Dixon and her work:

“Dear Cyri, The President’s Office received this email of gratitude from a parent recognizing the talented staff and student employees at our university. Thank you for the hard work, kindness, and caring dedication you show our students and families. You are appreciated, and we value your contribution to the success of our students and university. We know this comes from colleagues like you who make it happen. Thank you.”
~Office of the President

“Whenever I am worried about a student, Cyri knows what is going on or knows what to do to address the problem. Thank you for your help, patience, and for caring about all our students.”
~Dr. Tugdual Stephan Lebohec, faculty

“Cyri’s work represents many of NACADA’s Core Values, but most striking is her laser-like focus on empowering her students. In her philosophy, Cyri shares a little of her own experience as a first-generation student from a rural area; knowing that there so many talented and brilliant students who are limited in opportunities and resources, she [Cyri] writes that this ‘drives my motivation to help any student who walks in my door to not only survive and graduate, but also thrive and make the most of their experience.’”
~Stephanie Begaye, and Ashley Glenn, UAAC Advisor Awards Committee Co-Chairs

“Cyri has been a terrific advisor for me. She has always been available for chats or emails and been quick to respond to all of my questions, even unusual or specific ones that are only tangentially related to completing a physics degree. After every meeting I’ve had with her, I tell my wife, ‘she’s a great advisor.’ I think Cyri absolutely deserves this award.”
~student comment

“Cyri, thank you for taking the time to write a letter of recommendation on my behalf. I wanted to let you know I was accepted into two programs, one of them being the University of Utah! This is a huge step in pursuing my career goals and an immense accomplishment for me.”
-student comment

A first-generation graduate of Utah State University, with a degree in Physical Sciences Education, Dixon also has minor degrees in physics and chemistry teaching. She recently earned a Master of Public Administration degree from the University of Utah. Originally from Idaho, she returned to Utah after living in the Midwest and teaching middle school science and engineering in Arizona. She loves hot air ballooning, Wonder Woman, and her dog, Roka.

About NACADA
Since 1983, NACADA has honored individuals and institutions making significant contributions to the improvement of academic advising. The goal of NACADA is to promote quality academic advising and professional development of its membership to enhance the educational development of students. For more information, visit NACADA.

by Michele Swaner, first published @ physics.utah.edu

 

>> HOME <<

 

Outstanding Undergraduate

Outstanding Undergraduate


Luis Rufino, a senior who will graduate with a degree in physics, has overcome many academic challenges at the U. His efforts were rewarded when he received the College of Science Outstanding Undergraduate Student Award.

“When I first heard the news, I was surprised because I didn’t feel I deserved it, even though I’ve worked hard,” he said. “Maybe I’m suffering from the imposter syndrome, and I’m still questioning my abilities, but winning the award gave me reassurance that I’ve been successful in achieving my goal of improving as a student.” As a freshman at Salt Lake Community College, Rufino didn’t have a promising start. When he transferred to the U, his GPA was low. He was worried that he wouldn’t be able to keep up or survive upper-division physics classes.

Pearl Sandick and Luis Rufino

“The number of research opportunities available in the department is amazing and critical to development as a student or researcher. Even if you decide not to pursue graduate school, you will be a stronger candidate in the job market after completing a physics degree at the U.”

 

“I knew that I wanted to attend graduate school, which meant that I had to improve in my physics classes and also get some research experience,” he said. “Throughout my academic career at the U, I’ve tried to do my best and still find time for research. A physics degree is already quite challenging and wanting to do research on top of that added another layer of stress and difficulty.” Rufino thinks that one of the most important skills he learned at the U was how to manage school, research, and everything else that life throws at an undergraduate. He’s also learned how to bounce back from failure, especially in research.

His research is focused on exploring new physics to describe dark matter—the particles that gravitationally bind galaxies and clusters of galaxies together. The Standard Model of particle physics is the theory that explains how the most elementary particles interact with each other and combine to form composite objects, like protons and neutrons. Developed over the course of many decades, what we know today as the Standard Model was formulated nearly half a century ago and remains a focus of study for particle physicists. By itself, the Standard Model fails to provide an explanation for many important phenomena, such as the existence of dark matter in the universe.

Theoretical physicists have begun to think of a new group of particles that can potentially describe dark matter. These theoretical particles are called the Supersymmetric Standard Model, which suggests that a “cousin” or partner particle may exist for every fundamental particle in the Standard Model. One of these partner particles has the potential of being the mysterious dark matter particle.

Luis Rufino

But how do we find these partner particles? Whenever two particles interact with each other, they emit light and other particles. The same thing happens when two dark matter particles find each other. The light observed from these dark matter interactions can tell us about the dark matter characteristics. Rufino works on investigating the light originating from possible dark matter interactions from dwarf galaxies. He enjoys the research because it allows him to explore new ideas that have the potential to change much of what we know about physics.

He became interested in physics as a kid by watching pop-science movies, science cartoons, and superhero movies “I’d watch Jimmy Neutron, Dexter’s Laboratory, Spiderman, and Cosmos: A Spacetime Odyssey, with Neil deGrasse Tyson,” Rufino said. “I have to give Neil deGrasse Tyson all the credit for my passion for physics. After the first or second episode, I was convinced physics was what I wanted to study, especially astronomy. Of course, now I’m more passionate about discovering new physics.”

His favorite professors in the department have been Dr. Tugdual LeBohec, Dr. Charlie Jui, and Dr. Pearl Sandick. He enjoys the way Dr. LeBohec incorporates history into a lecture before getting into physics. Dr. Jui empathizes with students in their struggles to master complex concepts. He remembers the late nights, the constant stress, and, sometimes, the nightmares that physics students experience. Dr. Jui’s ability to connect with students made Rufino feel at ease in taking his class.

Dr. Sandick has been the most influential person in Rufino’s life and academic career. “She is a person I strive to become, and I’m very grateful to have her as my research advisor,” he said. “The number of research opportunities that are available in the department is amazing and critical to development as a student or researcher. Even if you decide not to pursue graduate school, you will be a stronger candidate in the job market after completing a physics degree at the U.”

When he isn’t studying, he likes to run, play soccer, rock climb, and hang out with friends. Currently, he’s training for his second marathon.

After five years of endless toil, Rufino plans to take a gap year between graduation and graduate school. He wants to spend more time with the people he cares about and explore hobbies, such as working with leather goods, building mechanical keyboards, and playing video games. After his gap year, he will begin graduate studies at Syracuse University.

by Michele Swaner, first published @ physics.utah.edu

 

Distinguished Service

Distinguished Service


Pearl Sandick

Pearl Sandick receives Distinguished Service Award.

Pearl Sandick, Associate Professor of Physics and Astronomy and Associate Dean of Faculty Affairs for the College of Science, has received the Linda K. Amos Award for Distinguished Service to Women. The award recognizes Sandick’s contributions to improving the educational and working environment for women at the University of Utah. Amos was the founding chair of the Presidential Commission on the Status of Women, was a professor of nursing, and served for many years as Dean of the College of Nursing and as Associate Vice President for Health Sciences. Throughout her career, Amos was the champion for improving the status and experience of women on campus.

“This is a great honor. I’m privileged to work with amazing students and colleagues who understand the value of a supportive community,” said Sandick. “I am really proud of what we’ve accomplished so far, and I’m excited to start to see the impact of some more recent projects.”

Sandick is a theoretical particle physicist, studying some of the largest and smallest things in the universe, including dark matter, the mysterious stuff that gravitationally binds galaxies and clusters of galaxies together.

Upon her arrival as an assistant professor in 2011, Sandick founded the U’s first affinity group for women in physics and astronomy. For the last two decades, the national percentage of women physicists at the undergraduate level has hovered around 20%. The percentage at more advanced career stages has slowly risen to that level, thanks in part to supportive programming designed to increase retention. The goal of the affinity group within the department is to foster a sense of community and provide opportunities for informal mentoring and the exchange of information, ideas, and resources. The group has also been active in outreach and recruiting. As of fall 2021, the group is now known as PASSAGE, a more inclusive group focused on gender equity in physics and astronomy.

Within the department and in the College of Science, Sandick has improved a number of processes, including writing an effective practices document for faculty hires, based in large part on research related to equitable and inclusive recruitment practices and application review. As Associate Dean, she worked with the College of Science Equity, Diversity, and Inclusion Committee (which she currently chairs) to create college-wide faculty hiring guidelines, which were adopted in 2020. She was also instrumental in several other structural and programmatic initiatives to create a supportive environment in the department, such as the development of a faculty mentoring program and the establishment of “ombuds liaisons” to connect department members with institutional resources.

Through her national service related to diversity and inclusion, Sandick has gained a variety of expertise that she has brought back to the campus community. For example, she has given workshops in the department, the college, and across campus on communication and negotiation, implicit bias, conflict management, and mentorship.

Here are comments from women in the Department of Physics & Astronomy, who have participated with Dr. Sandick in activities sponsored by PASSAGE:

“Being part of PASSAGE has allowed us to connect with others who share similar experiences in the department. It has also helped us connect with people, both within the university community and at other institutions, who have served as role models and mentors.” –Tessa McNamee and Callie Clontz, undergraduates

"PASSAGE became a lifeline during the pandemic and continues to be so. It helps equip members with the tools that they need in various aspects of academia. Professor Sandick makes it her mission to guide us, especially in a time of crisis. I am personally thankful to her and to all of the group members.” –Dr. Ayşegül Tümer, Postdoctoral Research Associate

In addition to her research, Sandick is passionate about teaching, mentoring, and making science accessible and exciting for everyone. She has been recognized for her teaching and mentoring work, with a 2016 University of Utah Early Career Teaching Award and a 2020 University of Utah Distinguished Mentor Award. In 2020, she also was named a U Presidential Scholar. As discussed earlier, women are still widely underrepresented in physics, and Sandick is actively involved in organizations that support recruitment, retention, and advancement of women physicists. She has served on the American Physical Society (APS) Committee on the Status of Women in Physics and as the chair of the National Organizing Committee for the APS Conferences for Undergraduate Women in Physics. She is currently chair of the APS Four Corners Section, which serves approximately 1,800 members from the region.

- by Michele Swaner, first published at physics.utah.edu

>> BACK <<