The Frontier of Physics

The Frontier of Physics


The Standard Model of particle physics is the theory that explains how the most elementary particles interact with each other and combine to form composite objects, like protons and neutrons. Developed over the course of many decades, what we know as the Standard Model today was formulated nearly half a century ago and remains a focus of study for particle physicists. But by itself, the Standard Model fails to provide an explanation for many important phenomena, such as the existence of the dark matter in the universe.

The Standard Model

Today, physicists and researchers are on the frontier in the search for physics beyond the Standard Model, using connections between theoretical particle physics, cosmology, and astrophysics to help us understand the universe.

Pearl Sandick, Associate Professor of Physics and Astronomy and Associate Dean of Faculty Affairs for the College of Science, is on that frontier. As a theoretical particle physicist, she studies some of the largest and smallest things in the universe, including dark matter, which is the mysterious stuff that gravitationally binds galaxies and clusters of galaxies together.

While regular matter makes up about one-sixth of the total matter in the universe, dark matter makes up five-sixths. There are compelling arguments that dark matter might actually be a new type of elementary particle. Electrons are an example of an elementary particle—they are the most fundamental building blocks of their type and are not composed of other particles. Other examples of elementary particles include quarks, neutrinos, and photons.

In August 2019, Sandick and her colleagues hosted a workshop entitled “The Search for New Physics—Leaving No Stone Unturned,” which brought together dozens of particle physicists, astrophysicists, and cosmologists from around the world to discuss recent advances and big ideas. “It was such a vibrant environment; I think it helped us all broaden our perspectives and learn new things. Though there’s a lot going on in the meantime, we’re already excited about the prospect of hosting a second “No Stone Unturned” workshop in the new Science Building.”

Recently, Sandick has turned her attention to another cosmological phenomenon—black holes—tackling the question of how their existence affects our understanding of dark matter and other physics beyond the Standard Model.

“Some of this new research makes use of the cosmic microwave background (CMB), which is leftover radiation from the Big Bang that we can observe today,” said Sandick.

“CMB measurements can help us understand the structure and composition of the universe, including how much is made of dark matter. The CMB also can provide hints about what other particles or objects existed in the early universe.”

Before the CMB was created, the universe was very hot and very dense. In this environment, the densest places would have collapsed to become black holes. The black holes that formed in this way are called primordial black holes (PBHs), to differentiate them from black holes that form much later when stars reach the end of their lives. Heavy enough PBHs would still be around today and could make up some or all of the dark matter, providing an alternative to the idea that dark matter is a new particle. Lighter PBHs probably are not an explanation for dark matter, but they would have had an important interplay with dark matter and other new particles.

Sandick, along with a U of U postdoctoral associate, Barmak Shams Es Haghi, have been looking into the many impacts of a population of light PBHs in the early universe. Recently, they’ve completed the first precision study of some spinning PBHs in the early universe, finding that current CMB measurements from the Planck satellite (an observatory operated by the European Space Agency) and future measurements with the CMB Stage 4 experiment at the South Pole and in the Chilean desert are sensitive to many important PBH scenarios. The Planck data already point to some more and less likely possibilities, while CMB Stage 4 will be an important step forward in understanding the life and death of small black holes.

In addition to her research, Sandick is passionate about teaching, mentoring, and making science accessible and interesting. She has been recognized for her teaching and mentoring work, with a 2016 University of Utah Early Career Teaching Award and a 2020 University of Utah Distinguished Mentor Award. In 2020, she also was named a U Presidential Scholar. Women are still widely underrepresented in physics, and Sandick is actively involved in organizations that support recruitment, retention, and advancement of women physicists. She has served on the American Physical Society (APS) Committee on the Status of Women in Physics and as the Chair of the National Organizing Committee for the APS Conferences for Undergraduate Women in Physics. She is currently chair of the APS Four Corners Section, which serves approximately 1,800 members from the region. In 2011, she founded a group to support women in the Department of Physics and Astronomy and continues to serve as their faculty advisor.

She earned a Ph.D. from the University of Minnesota in 2008 and was a postdoctoral fellow at Nobel Laureate Steven Weinberg’s group (Weinberg Theory Group) at the University of Texas at Austin before moving to the University of Utah in 2011.

- by Michele Swaner, first published at physics.utah.edu

>> BACK <<

 

Arctic Adventures

The Science of Salty Ice


BBC StoryWorks

BBC StoryWorks and the International Science Council present "Unlocking Science," which showcases how science is helping to solve some of society's greatest collective challenges. The University of Utah is the only institution in North America represented in the series, which showcases how science is helping to solve some of society's greatest collective challenges.

Jody Reimer

Counting on Mathematicians to Help Save the Planet

On a brilliant white ice floe floating in the Arctic Ocean, a group of people in bulky coats adjust to the biting cold, having been dropped off by helicopter. “All of a sudden, I turn around and there’s a polar bear and it starts running at us,” says Jody Reimer, recounting a moment of panic. “Luckily, the helicopter swooped back in to scare the bear off, but I had the adrenaline shakes for the rest of the day,” she adds, laughing.

You might expect such a nail-biting anecdote to come from an explorer, but Dr Reimer is a mathematician and lecturer at the University of Utah, as well as being part of a community that has swapped cosy classrooms for some of the Earth’s most inhospitable wildernesses, in a bid to use numbers to understand global warming.

Their adventures enable them to observe first-hand the processes driving change in the polar regions and validate their mathematical theories of sea ice and its role as a critical component in the Earth’s climate system.

A complex problem
The thickness and extent of sea ice in the Arctic has declined quickly since satellite measurements were first taken in 1979.

Sea ice is the Earth’s refrigerator, reflecting sunlight back into space. Its enduring presence is important to our planet’s future because, as more ice melts, more dark water is exposed which absorbs more sunlight. This sun-warmed water melts more ice in a self-reinforcing cycle called ice albedo feedback.

While sea ice decline is perhaps one of the most visible large-scale changes connected to planetary warming on the Earth’s surface, analysing, modelling and predicting its behaviour and the response of the polar system it supports is incredibly difficult, but mathematicians can help.

Kenneth Golden, a distinguished professor of mathematics and adjunct professor of biomedical engineering at the University of Utah, has built a unique sea ice programme over 30 years. Its combination of mathematics research, climate modelling and exciting field expeditions, has attracted students and postdoctoral researchers, including Dr Reimer, who are focused on using this type of science to help tackle the pressing challenges of a rapidly changing climate.

Factoring in animals
Dr Reimer has studied how polar bears and seals respond to changes in their frozen environment. While she used mathematical models to understand the interactions between these creatures and their habitat, she also took measurements and samples from bears in the Arctic, which was something she never expected to do as a mathematician. “They’re not totally sleeping when they are tranquilised; they’re groggy,” she explains. “One of them freaked me out because it seemed like it could wake up at some point.”

Their shrinking habitat means polar bears are walking on thin ice, but it’s hoped that studies like Dr Reimer’s will help experts understand how to protect the majestic predators.

However, it is the “mind-blowing” microscopic world of bacteria and algae that live in salty water pockets inside the sea ice that now excites her. This biological community and its habitat are influenced by changes in temperature, salinity and light, making it difficult to model accurately. In her current work, Dr Reimer constructs models to understand how these factors interact to determine biological activity within the ice. “Understanding how processes on these small scales contribute to macro-level patterns is critical to modelling the impact of a warming climate on polar marine ecology,” she explains.

Crunching the numbers on salty ice
It is the challenge of understanding how the microscopic structure of sea ice affects the behaviour of massive expanses of ice that interests Prof Golden. He has visited the Earth’s polar regions 18 times, braving the westerly winds known as the “Roaring Forties” to reach Antarctica by ship and narrowly avoiding plunging into icy waters while measuring sea ice. “One time I was visited by a massive whale about eight feet away, who could easily have broken the thin floe I was on with a casual flick of its tail,” he says.

Ken Golden

Prof Golden studies the microstructure of sea ice to calculate how easily fluid can flow through it. “Sea ice is salty. It has a porous microstructure of brine inclusions which is very different from freshwater ice,” he says.

Prof Golden has led interdisciplinary teams to predict the critical temperature at which the brine inclusions connect up so that fluid can flow through sea ice, and to develop the first X-ray tomography technique to analyse how the geometry of the inclusions evolves with temperature. “Understanding how seawater percolates through sea ice is one of the keys to interpreting how climate change will play out in the polar marine environment,” he explains.

Discovering this “on-off switch” has helped scientists better understand processes such as how nutrients that feed algal communities living in the brine inclusions are replenished.

The brine in sea ice also affects its radar signature, which affects satellite measurements of parameters like ice thickness used to validate climate models. These models are important because they predict future changes to our climate and are used by world leaders and scientists to come up with mitigation strategies.

Coming in from the cold
The variety of ice presents a challenge, but diversity among researchers, teachers and students creates the perfect environment for fresh ideas. In the US, just one quarter of doctoral degrees in mathematics and computer sciences were awarded to women in 2015, but schemes such as the University of Utah’s ACCESS programme are nurturing talented female mathematicians by helping them unlock opportunities such as mentoring and hands-on research. Expeditions to the Arctic not only give students an elevated experience, but ensure mathematicians are involved in cutting-edge research and solutions, alongside climate scientists and engineers.

When they are not battling blizzards, Dr Reimer and Prof Golden work on collaborative, interdisciplinary projects and co-mentor female undergraduate students as part of the ACCESS programme. After refreshing the mathematics component in 2018 to include climate change, Prof Golden has seen roughly triple the number of ACCESS students interested in taking a maths major or research placement than before.

Rebecca Hardenbrook, who is one of Professor Golden’s PhD students, says: "focusing on pressing issues like climate change attracts more of the people we want into mathematics, which is everyone, but in particular, women, people of colour, queer people; anyone from an underrepresented background.”

Rebecca Hardenbrook

Pooling resources
Hardenbrook joined the ACCESS program ahead of her first year as an undergraduate, spending the summer in an astrophysics lab, which opened her eyes to the possibility of doing research. "It was really life changing," she says, not least because she further decided to pursue a PhD in mathematics with Prof Golden after studying thermal transport through sea ice as an undergraduate.

She now inspires younger students on the ACCESS scheme as a teaching assistant, as well as modelling melt ponds, which are pools of water on the Arctic sea ice. These ponds play a decisive role in determining the long-term melting rates of the Arctic sea ice cover by absorbing solar radiation instead of reflecting it. As they grow and join together, they undergo a transition in fractal geometry, effectively creating a never-ending pattern that can be modelled by mathematicians.

Hardenbrook is building upon a decade of work on melt ponds by Prof Golden and previous students and researchers at the university by adapting the classical Ising model, which was developed more than a century ago and explains how materials can gain or lose magnetism, to model melt pond geometry. “I hope to make the model for sea ice more physically precise so that it can be put into global climate models to create a more accurate approach of addressing melt ponds, which have a surprising effect on the albedo of the Arctic,” she explains.

Adding to the big picture
Mathematicians have already solved the conundrum of how to define the width of the undulating marginal sea ice zone, which extends from the dense inner core of pack ice to the outer fringes , where waves can break the floating ice.

Court Strong, who is an atmospheric scientist and one of Prof Golden’s colleagues at the University of Utah, drew inspiration from an unusual source: the cerebral cortex of a rat’s brain. He realised they could use the same mathematical method to measure the width of the marginal ice zone as they do for measuring the thickness of the rodent’s bumpy brain, which also has a lot of variation. With the aid of this simplified model, the team was able to demonstrate that the marginal ice zone has widened by around 40% as our climate has warmed.

The university of Utah’s ACCESS scheme, including its hands-on research, immerses students in an interdisciplinary environment where maths is part of a bigger picture. It encourages cross pollination, where methods and ideas from seemingly unrelated areas of science can be used to solve problems when the underlying mathematics is essentially the same.

“When you’re presented with an unusual situation, you need different kinds of minds to look at a problem clearly and come up with solutions,” says Prof Golden.

The loss of sea ice seen in the Arctic has happened over just a few decades and continues at an alarming pace.

“We need all the good brains and different ways of thinking that we can get, and we need them fast,” he says.

This article has been reviewed for the University of Utah, National Science Foundation and Office of Naval Research by Elvis Bahati Orlendo, International Foundation for Science, Stockholm and Dr Magdalena Stoeva, FIOMP, FIUPESM.

Originally published by BBC Storyworks
Interview of Jody Reimer and Ken Golden by Dean Peter Trapa - Video

>> HOME <<

 

 

SRI Update

SRI Update


Many undergraduates major in science in the hope of doing research someday. The College of Science’s Science Research Initiative (SRI) is an innovative new program that puts students in a lab as soon as they arrive.

“The most consequential learning happens by doing, and that is especially true in the College of Science. Experiences in a laboratory-centered, team-based, interdisciplinary environment give students the skills to succeed and access opportunities in high-paying industries,” said Peter Trapa, Dean of the college. “The SRI offers incoming students, with no prior exposure to research, the opportunity to learn alongside their peers to gain hands-on, technical expertise, and learn directly from researchers as early as their first year at the U. The college’s exceptional faculty, world-class research facilities, and commitment to in-person experiential learning makes this unique program possible.”

Learning by doing.

Any student admitted to the College of Science can apply. During the first semester, the cohort of SRI undergraduates take a course that prepares them to work in a research lab. The course teaches principles of scientific inquiry, introduces students to the breadth of research in the College of Science, and breaks down the structure of a lab, such as the roles of graduate students, postdoctoral researchers, and the principal investigator. After learning about the research projects, known as research streams, the students rank the labs they’d most like to experience. The program matches them to a SRI faculty scientist leading the project where they will work during the second semester. Then, SRI mentors help each student figure out a path forward, whether it be continuing with the research stream, switching projects, or even finding alternatives to lab-based research.

The SRI is led by three scientists and educators who specialize in diverse disciplines. Dr. Joshua Steffen, Assistant Professor Lecturer of Biology, leads a research stream that uses metagenomic approaches to understand generalist foraging behaviors. Dr. Ryan Stolley, Associate Instructor of Chemistry, leads a research stream building an underexplored class of molecules. Dr. Heather Briggs, Associate Instructor for the College of Science, leads a research stream focused on understanding how microbial communities in flower nectar impact the way pollinators interact with plants.

Students who participate in the SRI leave campus with more than a cool college experience; they will graduate with the technical expertise to rise to the top of a competitive job market.  A degree from the U is a pipeline to Utah’s STEM-based economy. Choosing to participate in the SRI is a fantastic path to a rewarding career and an opportunity to earn high-paying jobs in their field.

- by Lisa Potter

Joshua Steffen

“We want to give as many students as possible in the College of Science a research experience as soon as they get here, totally independent of grades or previous experience. We’re different than other research programs because we remove a lot of the barriers that typically exist to getting into a lab. It can be intimidating to talk with faculty. We have a structured program that navigates that for the student. It’s also about building community. Research opportunities are one reason why you come to a big university like the U, but it’s easy to get lost and it can be hard to develop a community. We’re also hoping that this can help students connect with peers and mentors that they can rely on.”

Heather M. Briggs

“There is often a disconnect between how we do science and how we teach science. At the SRI we empower students to work through hypothesis generation, experimentation, and interpretation. This holistic process encourages a deeper understanding of concepts in practice and allows our students to take responsibility for their own learning. The SRI experience provides a supportive learning environment that fosters self-generation of ideas and ultimately a continued interest in research science.”

Ryan Stolley

“SRI benefits students, but it’s also a great opportunity for faculty. We work with faculty to write SRI into the broader impacts section on grants. But also, most researchers will have an undergraduate researcher at some point—it’s sometimes a roll of the dice on how they perform. Now, we can have a structured program that has specific goals, outcomes, and it can train these students. And the faculty has the freedom to manage them as they want. We’d love to get excited researchers into the fold and pair them with students who are excited by the work they’re doing.”

Benning Lozada

A student majoring in biology who had previously worked in research labs. He applied to the SRI to get experience in a field he was passionate about.

“I wanted to get involved in research because it’s really important for graduate school. But it’s really difficult to do. You have to cold call or email professors and, often times, they don’t have a place for you. I think this program is really useful because the environment is more teaching focused. So, you’ll be able to learn the skills that you need to, if you want to eventually go out and do research in other areas. It gives you a good basis as to what research looks like, so that you’re prepared for that in the future. You don’t always get that training when working in labs.”

Nayma Hernandez

A third-year biology major who transferred to the U. “It was really hard to get into research where I transferred from because not every professor wants an undergraduate, and you’re not the only one trying. And here, well, as long as you’re in the program, you’ll be able to participate in research.

I think it’s always good to do some research, even if you don’t think you want to go to grad school. It’s always good to try something because you might end up liking it. I’ve had some students tell me that they changed careers because they ended up doing research and they’d rather do that. The SRI program gives you that initiative to actually start doing research.”

Give to the SRI

Demand for the Science Research Initiative is skyrocketing. More than 150 students have enrolled this year, and we are planning for 300 by fall of 2022.

Experiences in a laboratory-centered, team-based, interdisciplinary environment give students the skills to succeed and access opportunities in high-paying industries.
We know the majority of our students work at least part-time to make ends meet, and it is hard for many of these students to work in the lab instead of picking up hours at their jobs. Our goal is to remove this financial barrier by providing ongoing support for every science student who needs a scholarship.

If you would like to donate to the Science Research Initiative, the College of Science will match your donation dollar-for-dollar up to $50,000. Your donation can go further and help us provide this unique experience to more students. For more information please call 801-581-6958, or visit science.utah.edu/giving.

>> HOME <<

 

 

Research Opportunities

Undergraduate Research Opportunities


The best time to start your research is now! Students can find a wide variety of opportunities in their major or in a topic that interests them.

The College of Science has a long tradition of exceptional research. Working in a lab is one of the best experiences you can pursue as a College of Science student. Students across campus are participating in cutting-edge research that is making an impact on daily lives.

Where to start? Current professors are a great resource - they can connect you to research labs and faculty peers. College departments maintain a list of research projects currently being done, and the Student Engagement Coordinator can help you reach out to find opportunities.

Tips for Finding Research:

  • Talk to your professors! They are a wealth of knowledge and LOVE to talk about their work. Talk to them after class, or set an appointment to talk about their work and your interests.
  • Go to the department's website (linked below) that you are interested in and click on the research tab. Read short summaries on each professor's research. It's okay if you don't understand the research right away–this  is normal! Keep a list of faculty that interest you to narrow down your options.
  • Use Google Scholar to browse through publications by the professor with titles that interest you. Most professors keep a list of current publications, read the abstracts and look at images; this will help you narrow down topics.
  • Email the professor you are interested in working with. You may need to email them several times. This is okay; they are very busy and often appreciate the reminder.
    Include an updated resume in your email. 
  • If the meeting goes well and it seems like a good fit, you can talk about the next steps to becoming a member of their group. Don't forget to:
    • Discuss how many hours you would like to work
    • How many semesters you want to be with the lab
    • Future plans for opportunities such as UROP
    • And ask who your lab mentor will be
  • If you meet with a lab, and it doesn't seem like a good fit: that's okay. Repeat this process with another professor. If you are not quite sure, and you want to get a better feel for the research group, ask if you can attend a weekly group meeting, where current students in the group often discuss their current research.

Department Research Pages



Example Email to a Professor:

Dear Dr. ______________,

My name is (insert your name) and I am a (first year, sophomore, junior, senior) (___________) major at the University of Utah. I have been exploring research opportunities in the department, and after looking through your research page, I would like to meet with you to discuss (your studies, a certain topic, opportunities to work in your lab, etc). (Feel free to elaborate on your interests and what you are looking for.)

I can meet (give 3-5 different specific dates and times that work for you...this allows them to choose a time that works for them). Would you be able to meet at any of these times?

I am looking forward to hearing back from you.

Thank you for your time,

(Your name)

How do I get funding for my research?

There are several ways to get paid for the research you do. Here are the more common ways that students work toward:

How do I present my research?

One of the best parts of doing research is presenting at conferences.

What is an REU?

National Science Foundation (NSF) funds a large number of research opportunities for undergraduate students through its Research Experiences for Undergraduates (REU) program. An REU Site consists of a group of ten or so undergraduates who work in the research programs of the host institution. Each student is associated with a specific research project, where they work closely with the faculty and other researchers. Students are granted stipends and, in many cases, assistance with housing and travel.

Undergraduate students supported with NSF funds must be citizens or permanent residents of the United States or its possessions. An REU Site may be at either a US or foreign location. Students must contact the individual sites for information and application materials. NSF does not have application materials and does not select student participants. A contact person and contact information is listed for each site.

Search for an REU site or find more information @ https://www.nsf.gov/crssprgm/reu/



>> Back <<

 

 

Be the Light

Be the light in your community


On July 14-16, 2021, students of the American Indian Services (AIS) Pre-Freshman Engineering Program (AIS PREP) came to the University of Utah to celebrate the completion of their 2021 AIS PREP, co-hosted by the College of Science. AIS PREP is a free program for Native American students to take advanced science, technology, engineering and mathematics (STEM) courses for six weeks for three consecutive summers. At the end of the program, the students earn scholarships to any higher education institution that they choose and continue to receive financial assistance. The 2021 AIS PREP group included 113 students from different Native American tribes: Navajo (Diné), Hopi, Oglala Sioux (Lakota), Shoshone/Bannock, Zuni, Crow, Paiute, and Cheyenne. AIS PREP is focused on making the curriculum culturally sensitive to the Native American students they serve. They bring a unique opportunity to keep the students close to their homes.

“We’re the only non-profit that has taken on such a big program like this. Some of these tribal communities are in rural areas—resources are scarce,” said Meredith Little Lam, project and program manager at AIS and AIS scholarship alumnus. “The whole point of AIS PREP is that we want to make sure we give our Native American students STEM resources that will allow them to succeed in high school.”

The students traveled to the U on July 14 to stay in campus dorms, meet PREP students from other AIS PREP sites, and hear presentations from U staff and College of Science faculty to celebrate the completion of the program. The week ended with a keynote address from the architect, inventor and entrepreneur Alice Min Soo Chun, during which she shared her inspiring story of changing the world by inventing a durable, portable, collapsible solar light.

“These students come from some of the poorest reservations in the United States. This really is a trip of a lifetime for them,” said Little Lam, “Some come from areas where there’s no running water, no electricity. We live in the United States and it’s just appalling that we can’t figure out ways to help these communities. And so, I think that this is a proactive way of getting these students involved in STEM to let them know, ‘You can change your tribal communities. You have it within yourself to be that leader.’”

“The College of Science is honored to have taken part in celebrating this incredible accomplishment of completing AIS PREP,” said Cassie Slattery, director of special projects of the college. “We would be lucky to have any one of these exceptional students pursue science here at the U.”

Anyone can be a scientist


On Thursday, the students learned about a diverse array of topics from speakers, including Donna Eldridge (Navajo/Diné), program manager of Tribal outreach for Health Equity, Diversity, & Inclusion, Amy Sibul of the School of Biological Sciences, Paul Ricketts of the South Physics Observatory, Julie Callahan (Little Shell Tribe of Chippewa) of ASPIRE, and Kyle Ethelbah (Western Apache), director of the U’s TRIO programs. One of the day’s highlights was an explosive presentation from chemist Ryan Stolley. He threw balls of fire, inhaled sulfur hexafluoride to give himself a funny low voice, and had the students freeze flowers with liquid nitrogen and smash them to bits. In between the chemistry magic, Stolley shared his personal story.

“I was a Native American student, of the Choctaw Nation of Oklahoma. When I was young, school was not my focus—I was just getting into trouble. But I got a lucky break and met some chemists who really changed my life,” said Stolley. “Native students are severely underrepresented in STEM disciplines. I love any opportunity to show them that it’s possible to pursue science. I mean, I’m covered in tattoos. Anybody can be a scientist. You just have to be curious.”

Stolley spoke to the students about attending Fort Lewis College, a university in Colorado that offers free tuition to Native American students. He received a doctoral degree in organic chemistry from the U and was a postdoctoral research assistant at the Pacific Northwest National Laboratory. He returned to Salt Lake City as a research assistant professor first in the Department of Chemistry and now in the College of Science, as well as part owner of a local chemical company.

“Part of what my company does is to make products that help clean contaminants out of water across the Colorado Plateau, especially on Tribal lands,” Stolley said, “I want to get these students thinking about how we can take our science and turn it around to help our Native communities.”

Creating positive memories on campus is part of how AIS PREP helps plant the seed to pursue higher education.

“We’re excited to be partnering with the U and having the ability to connect these students with faculty and current student volunteers who are Native American so that they can instill in their minds that it’s not an impossible dream,” said Little Lam. “Maybe they’ll be teachers and maybe they’ll be researchers, but wherever they may be, they can contribute to their Tribal communities. AIS doesn’t just stop with them after they graduate. We give them financial resources, but also say, ‘Hey, we’re here for you. Even after you finish this program.’”

A problem is an opportunity in disguise

This is the first year that AIS invited a keynote speaker to address the students during their program completion celebration. For Little Lam, Alice Min Soo Chun was the perfect choice. Chun, founder and CEO of Solight Designs, Inc. invented the Solar Puff, a portable, collapsible, self-inflating light powered by the sun. Little Lam met Chun while at Navajo Strong, through which Chun donated Solar Puff lights to families on the Navajo Nation without access to electricity.

“Every problem is an opportunity in disguise,” Chun, who is also a professor at Columbia University, told the AIS PREP graduates. “By doing research and observing, anybody can do this.”

Chun’s passion for solar energy began when her son was diagnosed with asthma, a condition that was aggravated by New York City’s poor air quality. Chun was inspired to find energy solutions that would reduce air pollution and its impacts on respiratory health. She realized that her son’s respiratory issues were global; without access to electricity, millions of people are forced to burn kerosene lanterns for lighting that produce noxious fumes. She saw a need for solar lights that were durable and collapsible, but the only ones available had to be inflated, leaving users vulnerable to bacterial infections. So, she invented a foldable design that drew from her childhood.

“I’m Korean. When I was a little girl, my mother taught me origami when I was young. Origami is an incredibly powerful tool,” she said. “Paper on its own can’t stand up. Fold it once, you have a corner, you have structure.”

Through the “Give a Light” program, Solight Designs has supplied Solar Puffs to Haiti, Puerto Rico, The Florida Keys, Ghana, Ecuador, Miami and more after natural disasters left people without power. During her keynote address, Chun passed out Solar Puff lights to everyone in attendance and turned off the lights. Everyone switched on their solar lanterns, eliciting ooo’s and aww’s. The lights illuminated the entire auditorium, demonstrating the invention’s power.

“I used to get beat up a lot for looking different. So, I became a fighter—not with my fists, but with the light of my heart and mind. You are all light warriors,” Chun said. “My hope is that you leave understanding how powerful you are and that you have the ability to change the world.”

by Lisa Potter - originally published in @theU