Accessibility Menu
Press ctrl + / to access this menu.

Notebook 2020

Notebook 2020


Student Emergency Fund

Support students in need.

Read More
Rapid Response Research

Behind-the-scenes story of an NSF Rapid Response Research grant.

Read More
2020 Research Scholar

Delaney Mosier receives top College of Science award.

Read More
Dominique Pablito

Zuni, Navajo and Comanche, student majoring in chemistry and biology.

Read More
2020 Churchill Scholar

Michael Xiao brings home the U's fifth straight Churchill Scholarship.

Read More
Goldwater Winner

Isaac Martin awarded prestigious Goldwater Scholarship.

Read More
50th Anniversary

Science has been part of the University of Utah since the very beginning.

Read More
Goldwater Winner

Lydia Fries awarded prestigious Goldwater Scholarship.

Read More
Ana Rosas

Medicine is a family tradition for the Rosas.

Read More
Alex Acuna

Bridging the knowledge gap with networks of people.

Read More
Dalley Cutler

I want to see sensible climate policies and actions.

Read More

Rapid Response Research

Rapid Response Research


1.08.2020

Researchers identify a new coronavirus in Hubei province, China.

1
1.28.2020

Saveez Saffarian flies to Barcelona, Spain, to present research on HIV at the New Concepts in Virology conference

2
1.30.2020

The W.H.O. declares a global health emergency with 9,800 infected worldwide.

3
3.05.2020

Saffarian presents a colloquium on SARS-CoV2 virus to the science faculty.

4
3.06.2020

NSF announces RAPID research grants for COVID-19.

5
3.06.2020

Vershinin and Saffarian submit preliminary NSF proposal.

6
3.07.2020

Preliminary NSF proposal is approved.

7
3.09.2020

NSF RAPID Research Grant approved.

8
5.21.2020

Research paper on CoV2 virus reaction to the environment submitted.

9

Saveez Saffarian

On January 30, 2020, Saveez Saffarian traveled to Barcelona, Spain, to present HIV research at the New Concepts in Virology conference. “There was a lot of speculation about SARS-CoV2 in that meeting. Although, at the time, it was far less than it would become,” said Saffarian.

Michael Vershinin

Upon returning to Utah, Saffarian was asked to present a colloquium on the SARS-CoV2 virus to his fellow faculty in the Department of Physics & Astronomy. During preparations, Saveez reached out to fellow faculty member Michael Vershinin for help. Vershinin and Saveez have been friends since 2010. “We often bounce ideas off each other. Just to get another opinion and a fresh set of eyes,” said Saffarian.

Vershinin and Saffarian dove deep into the scientific literature to learn as much as possible about corona and related viruses, such as influenza. Their focus was on presenting an overview of the SARS-CoV2 for the colloquium on March 5, 2020. “At the time, I did not immediately see a connection between my HIV research and the SARS-CoV2 virus,” said Saffarian.

Heather Swan

On March 6, 2020, the National Science Foundation (NSF), announced a program of $200,000 Rapid Response Grants for non-medical, non-clinical- care research coronavirus research. The RAPID funding program allows the NSF to quickly review proposals in response to research on issues of severe urgency with regard to availability of data, facilities, or specialized equipment. Saffarian’s colloquium had turned into research opportunity.

Michael Vershinin recognized this research opportunity immediately. Much of the existing NSF research centered on the spread of influenza on an epidemiological level, with fewer answers about the actual virus particle and how climate and specific conditions affect it. “Our work is in the nanoscale,“ said Vershinin. “We can make a faithful replica of the virus packaging that holds everything together. The idea is to figure out what makes this virus fall apart, what makes it tick, and what makes it die.”

Prepared slides

The speed of the NSF approval was impressive. Vershinin and Saffarian submitted their preliminary NSF application on Friday, March 6. Twenty-four hours later, they received preliminary approval, and by Monday, March 9, final approval was issued.

“This application of sophisticated physics instruments and methods to understand how the 2019 coronavirus will behave as the weather changes is a clear example of how our investment in basic research years later prepares us for a response to a crisis that impacts not only our society, but also the whole world,”said Krastan Blagoev, program director in NSF’s Division of Physics.

Abhi Sharma

“You don’t just gain the insight that you want by looking at the virus on a large scale. Looking at a single virus particle is the key to being able to tease out what’s going on,” said the researchers. “Modern biology and biophysics allow us to ask these questions in a way we never could before.”

Saffarian and Vershinin are both members of the Center for Cell and Genome Sciences in the Crocker Science Center, where scientists who apply physics, chemistry and biology work alongside each other and can form collaborations rapidly—a key advantage in the fight against the virus.

Michael Vershinin, Abhi Sharma, Ben Preece, Heather Swann, Saveez Saffarian

Research Funding was provided by NSF under award number PHY- 2026657 for nearly $200,000.

 

Related Stories


2020 Research Scholar

Notebook 2020

Goldwater Winner

Dominique Pablito

Ana Rosas

Alex Acuna

50th Anniversary

Dalley Cutler

Goldwater Winner

2020 Churchill Scholar

2020 Research Scholar

Delaney Mosier

Delaney Mosier receives top College of Science award.

Delaney Mosier, a graduating senior in mathematics, has been awarded the 2020 College of Science Research Scholar Award for her cutting-edge work in the area of sea ice concentration, using partial differential equation models.

“I am humbled to receive this award,” said Delaney. “The College of Science is teeming with groundbreaking research, so it’s an overwhelming honor to be considered one of the top researchers in the College. I’m proud to be a representative of the amazing research going on in the field of mathematics.”

Delaney is also proud to receive the award as a woman. “I strive to be a positive role model for girls and women in STEM. I hope that by earning this award, I can inspire other women to consider working on mathematics research.”

In his letter of support for Delaney’s nomination, Distinguished Professor Ken Golden, who has served as her supervisor and mentor, discussed her research abilities, natural leadership skills, and mathematical prowess, indicating that Delaney is one of the most talented and advanced students he has seen in his 30+ years of mentoring.

Super Student

The College of Science Research Scholar Award, established in 2004, honors the College’s most outstanding senior undergraduate researcher. The Research Scholar must be a graduating undergraduate major of the College of Science, achieve excellence in science research, have definite plans to attend graduate school in a science/math field, and be dedicated to a career in science/math research.

Studying the Behavior of Sea Ice

Delaney studies patterns in the behavior of sea ice in polar regions. She’s interested in how physical processes affect these patterns on a short-term basis and how climate change can affect them in the long-term.

The primary goal of her research with Dr. Golden is to understand better how and why sea ice is changing over time. Considered relatively low order, their model allows them to study intimately the details of the sea ice pack, which can provide insights that might not yet be apparent to the climate science community. Her work tries to answer one of the most important research questions of the modern age: Why is polar sea ice melting so rapidly and will it ever recover?

She has always been passionate about the environment and finds the project exciting because it incorporates mathematics along with studying climate. “My project is very dynamic,” she noted. “Each time I meet with Dr. Golden, we discuss something new to incorporate into our model or seek a new way to understand it. It’s thrilling to be a part of such unique and innovative work.”

Utah Strong

She became seriously interested in math because of her 7th grade algebra teacher. “Mrs. Hein fostered an exploratory environment—I collaborated with my peers and was often challenged to explore the world of mathematics for myself,” she said. “I couldn’t get enough of it. To this day, math remains the one activity that I can completely lose myself in. Math challenges my mind in exhilarating and motivating ways.”

Mentors at the U

Delaney credits Dr. Golden with helping her pursue a variety of opportunities that have furthered her career as a mathematician. She also has praise for Dr. Courtenay Strong, associate professor of atmospheric sciences, and Dr. Jingyi Zhu, associate professor of mathematics, who have served as mentors and helped guide her research.

“My friend and roommate, Katelyn Queen, has been a wonderful mentor and inspiration to me throughout my journey,” said Delaney. “She is always willing to give me advice and support me in my endeavors. I have watched her excel in her first year of graduate school, and that has inspired me in moving forward.” She also thanks fellow students and her parents for their love and support. “My parents are simply the best,” said Delaney.

Her favorite teacher at the U is Dr. Karl Schwede, professor of mathematics. “I had Dr. Schwede for several classes and learned so much,” she said. “He has high standards for his students, which motivated me and helped me to retain the material. He is also supportive and helpful.”

When she isn’t studying or doing research, she loves to dance and listen to music. She was a competitive Irish dancer from ages 11 – 17. She is also an avid reader, especially during the summer.

The Future

Goodbye Salt Lake City

Delaney will begin her Ph.D. studies in applied mathematics this fall. She hasn’t yet decided if she will work in industry, continue with climate research, or become a professor. “Whatever I decide to do, my goal is to use mathematics to have an impact on the world,” she said.

 

by Michele Swaner

 

 

Dominique Pablito

Dominique Pablito

"My interest in medicine stems from my childhood experience."

Dominque Pablito grew up in the small town of Aneth, Utah, on the Navajo Nation, and in New Mexico on the Zuni Reservation. She lived in a four-bedroom house with 13 family members, sharing a bedroom with her mother and brother, and visited relatives for extended stays.

“I spent time with my great grandmother, whose house had no running water or electricity,” said Pablito.

Because her grandparents did not speak English, Pablito learned the Zuni and Navajo languages. Pablito said her father, an alcoholic, came in and out of her life.

“I spent time with his family in the Zuni Pueblo,” said Pablito. “I love the connection that the Zuni have with the land and the spirits of the land.”

With access to math and science courses limited in reservation schools, Pablito convinced her family to move.

“We ran out of gas in Saint George, Utah, where I registered for high school even though my family was unable to find housing,” said Pablito. “During my first quarter at my new school, I slept in a 2008 Nissan Xterra with my mother, brother and grandmother while I earned straight As, took college courses at Dixie State University and competed in varsity cross country.”

Pablito met her goal of graduating from high school in three years, racking up honors and college credits.

“My mother told me I would have to excel in school to get a scholarship for college,” said Pablito. “When I graduated at 15 with an excellent GPA, having taken college courses at night and with exceptional ACT and SAT scores, I was sure I would earn the Gates Millennium Scholarship. It wasn’t enough.”

Dominique Pablito

To compensate, she applied for 15 scholarships and was awarded 12, including the Larry H. Miller Enrichment Scholarship—a full ride.

For Pablito, the transition to college life was jarring.

“It was the first time I had my own bed in my own bedroom,” said Pablito. “I missed being so close to my Zuni culture. I brought small kachina figurines with me and did my best to decorate my room like my old homes.”

Despite her hard work in high school, Pablito was not prepared for college academics and sought help from tutors, professors, and TAs.

“I spent late nights watching tutorials on YouTube,” said Pablito. “College retention rates for indigenous students are exceptionally low, so instead of going home for the summer, I sought out research internships and difficult coursework to keep busy.”

Academics were not her only challenge.

“I started college at 15 and by age 16 I had no parents,” said Pablito. “My mother was abusive and we ceased contact. At 17, I was diagnosed with an adrenal tumor, which pushed my strength to its limits. I never felt more alone in my life.”

For support, she turned to her grandparents.

“Hearing their voices speaking the languages I grew up with helped with my loneliness,” said Pablito. “My grandfather didn’t allow me to drop out of college.”

Pablito also reached out to Indigenous student groups.

“I joined AISES and the Hospital Elder Life Program (HELP), which connected me with community elders,” said Pablito. “I tutored students in math and science and assisted in teaching Diné Bizaad (Navajo) to students who had never heard the language. Being a part of these communities has been crucial in my success.”

She also credits her research internships with helping her discover her strengths.

“I decided to major in chemistry when I participated in the PathMaker Research Program at the Huntsman Cancer Institute, where I used biochemistry to investigate DNA damage and repair in cancer cells,” said Pablito. “Dr. Srividya Bhaskara guided me through the world of research, helping me earn many awards and grants.”

In the lab Pablito learned the important lesson that failure is inevitable.

“I began to think that science wasn’t for me, until I understood that failure is a part of research,” said Pablito. “What matters is how you handle that failure.”

She had a different lab experience during an internship at Harvard Medical School and Massachusetts General Hospital. There she used targeted photoactivatable multi-inhibitor liposomes to induce site-specific cell damage in various cancer cells.

“That’s where my research interest in cancer and molecular biology developed,” said Pablito. “That internship taught me how to effectively present scientific data and how important community can be for the success of Native students.”

Her interest in medicine stems from her childhood experience with the Indian Health Service.

“Many of my elders distrusted going to doctors because most health care providers are white,” said Pablito. “My great-grandfathers’ illnesses could have been treated much better had they visited a doctor sooner. I will use my medical training to improve the care of elders on my reservation by integrating culture, language and medicine.”

In addition to earning an MD in family medicine, Pablito plans to earn a doctoral degree in cancer biology and eventually open a lab on the Zuni Pueblo to expose students to research.

“I want to spark an interest in STEM in future generations of Indigenous scholars,” said Pablito. “I want to give them advantages I never had.”

 

by D.J. Pollard
American Indian Science and Engineering Society (AISES).

The AISES magazine, People in Winds of Change, focuses on career and educational advancement for Native people in STEM fields. The article below first appeared in the Spring 2020 Issue.

 

 

2020 Churchill Scholar

Michael Xiao

Five for Five.

Michael Xiao brings home the U's fifth straight Churchill Scholarship.

Five years after the University of Utah became eligible to compete for the prestigious Churchill Scholarship out of the United Kingdom, the university has sported just as many winners. All of them hail from the College of Science, and all were facilitated through the Honors College which actively moves candidates through a process of university endorsement before applications are sent abroad. The effort has obviously paid off.

“These students are truly amazing,” says Ginger Smoak, Associate Professor Lecturer in the Honors College and the Distinguished Scholarships Advisor. “They are not merely intelligent, but they are also creative thinkers and problem solvers who are first-rate collaborators, researchers, learners, and teachers.”

The most recent U of U winner of the Churchill Scholars program is Michael Xiao of the School of Biological Sciences (SBS).

While early on he aspired to be a doctor, Xiao’s fascination with how mutations in the structure of DNA can lead to diseases such as cancer led him to believe that while it would be one thing “to be able to treat someone, to help others, it would be quite another to be able to understand and study the underpinnings of what you’re doing and to be at its forefront.” This is particularly true, right now, he says, with the advent of the coronavirus.

Michael Xiao

The underpinnings of Xiao’s recent success started as early as eighth grade in the basement of his parent’s house where he was independently studying the effects of UV light damage on DNA. To quantify those effects he was invited to join a lab at nearby BYU where faculty member Kim O’Neill, Professor of Microbiology & Molecular Biology mentored him through high school, even shepherding him through a first-author paper.

Since then Xiao has matured into a formidable researcher, beginning his freshman year in the lab of Michael Deininger, Professor of Internal Medicine and the Huntsman Cancer Institute, followed by his move to the lab of Jared Rutter, a Howard Hughes Medical Institute Investigator in biochemistry. With Rutter he studied the biochemistry of PASK and its roles in muscle stem cell quiescence and activation of the differentiation program. His findings provided insight into the role and regulation of PASK during differentiation, as well as a rationale for designing a small molecule inhibitor to treat diseases such as muscular dystrophy by rejuvenating the muscle stem cell population.

Early experience in a research lab is not only about engaging the scientific method through new discoveries but also about making academic connections that lead to auspicious careers.

Sir Winston Churchill

One of those connections for Xiao was with Chintan Kikani now at the University of Kentucky. In fact the two of them are currently finishing up the final numbers of their joint PASK- related research.

The Churchill award, named after Sir. Winston Churchill, will take Xiao to Cambridge University beginning in October. While there, Xiao plans to join the lab of Christian Frezza at the MRC Cancer Unit for a master’s in medical science. After returning from the UK, Xiao plans to pursue an MD/PhD via combined medical school and graduate school training in an NIH-funded Medical Scientist Training Program.

Xiao is quick to thank his many mentors as well as SBS and the Honors College, the latter of which, he says, taught him to think critically and communicate well, especially through writing. Honors “was very helpful in helping me improve in a lot of areas,” he says, “that are important to my work and my personal life as well.”

Denise Dearing, Director of the School of Biological Sciences at the University of Utah describes Michael Xiao as one who “epitomizes how early research opportunities are transformative and how they ‘turbo-charge’ the likelihood of creating world-class scientists. The School is first in line to congratulate him on receiving this extraordinary award.”

 

by David Pace

 

- First Published in OurDNA Magazine, Spring 2020

Related Posts

 

2021 Churchill Scholar

Goldwater Winner

Goldwater Winner

Cameron Owen 2018 Churchill Scholar

2019 Churchill Scholar

2018 Churchill Scholar

2017 Churchill Scholar

2016 Churchill Scholar

Goldwater Winner

Isaac Martin

Isaac Martin awarded prestigious Goldwater Scholarship.

The College of Science is pleased to announce that Isaac Martin, a junior studying mathematics and physics, has been awarded Utah's second Goldwater Scholarship for 2020-21.

During middle school and most of high school, Isaac lived in Dubai with his family, where he attended an online high school, allowing him to focus on science and math classes. When his family moved to Utah the summer before his senior year, he decided to attend Salt Lake Community College (SLCC) instead of finishing high school, taking as many math and physics classes as he could.

“It was incredible because I had never had teachers like that before,” said Isaac. “My professors at SLCC were more than happy to talk with me after class and during office hours. They were the main reason I was able to complete SLCC's catalog of math and physics courses in a year. They were instrumental in my decision to switch out of my pre-declared computer engineering major into a math and physics double major at the U.”

Transition to Math

During Isaac’s first four semesters at the U, he intended to pursue a physics Ph.D. and focused primarily on physics classes; however, after brief stints in two different labs, he realized mathematics is a better fit for his talents and interests.

Last summer, Isaac participated in a Research Experience for Undergraduates (REU) program at the University of California, Santa Barbara, and his work has since resulted in a publication. Isaac has been planning to attend the University of Chicago’s REU math program this summer, but if that doesn’t happen due to COVID-19 concerns, he will continue working on positive characteristic commutative algebra with his U supervisors, Thomas Polstra, a National Science Foundation postdoc, and Professor Karl Schwede.

He is indebted to professors in the Math Department, including Dr. Adam Boocher, previously a postdoc at the U and now assistant professor of mathematics at the University of San Diego; Professor Srikanth Iyengar; Dr. Schwede, Dr. Polstra; and Professor Henryk Hecht. “The thing I appreciate most about my mentors is their willingness to take time out their day to talk to me and offer advice,” said Isaac. “My conversations with them are mathematically insightful, but they also reassure me that I'm worth something as a person and am good enough to pursue a career in math.”

Career Goals

When he’s not doing math, Isaac is most likely either playing piano, rock climbing, running in the foothills, or beating his roommates in Smash Bros Ultimate. “I used to have a huge passion for video game programming and would compete in game jams, which are game development competitions held over 36- or 48-hour time intervals,” said Isaac. “I haven’t been able to do that much in the last few years, but would like to pick it up again as a hobby.”

Isaac hopes to have a career in academia as a pure mathematics researcher. “I'd especially like to study problems in commutative algebra and representation theory with relevance to mathematical physics,” he said. Isaac also remains interested in the world of condensed matter. “There is so much novel mathematics dictating theoretical condensed matter, and I expect many exciting breakthroughs will happen there in the near future.”

 

The Goldwater Scholarship

 

 

As the result of a partnership with the Department of Defense National Defense Education Programs (NDEP), Mrs. Peggy Goldwater Clay, Chair of the Board of Trustees of the Barry Goldwater Scholarship and Excellence in Education Foundation, announced that the Trustees of the Goldwater Board have increased the number of Goldwater scholarships it has awarded for the 2020-2021 academic year to 396 college students from across the United States. “As it is vitally important that the Nation ensures that it has the scientific talent it needs to maintain its global competitiveness and security, we saw partnering with the Goldwater Foundation as a way to help ensure the U.S. is developing this talent,” said Dr. Jagadeesh Pamulapati, Director of the NDEP program, as he explained the partnership. With the 2020 awards, this brings the number of scholarships awarded since 1989 by the Goldwater Foundation to 9047 and a scholarship total to over $71M.

From an estimated pool of over 5,000 college sophomores and juniors, 1343 natural science, engineering and mathematics students were nominated by 461 academic institutions to compete for the 2020 Goldwater scholarships. Of students who reported, 191 of the Scholars are men, 203 are women, and virtually all intend to obtain a Ph.D. as their highest degree objective. Fifty Scholars are mathematics and computer science majors, 287 are majoring in the natural sciences, and 59 are majoring in engineering. Many of the Scholars have published their research in leading journals and have presented their work at professional society conferences.

Goldwater Scholars have impressive academic and research credentials that have garnered the attention of prestigious post-graduate fellowship programs. Goldwater Scholars have been awarded 93 Rhodes Scholarships, 146 Marshall Scholarships, 170 Churchill Scholarships, 109 Hertz Fellowships, and numerous other distinguished awards like the National Science Foundation Graduate Research Fellowships.

 

by Michele Swaner

 

 

50th Anniversary

GOLDEN Anniversary
1970-2020


July 1, 2020, marks the 50-year anniversary of the College of Science, comprised of the School of Biological Sciences, and Departments of Chemistry, Mathematics, and Physics & Astronomy.

A Brief History

Henry Eyring

When the University of Deseret was founded in 1850 in the Territory of Utah, it was primarily a training school for teachers. The newly formed university taught only a handful of topics, including algebra, astronomy, botany, chemistry, geometry, and zoology. Indeed, mathematics and physical sciences were well represented from the earliest days of the university.

By the 1920s, only six organized schools existed at the U: Arts and Sciences, Business, Education, Engineering and Mines, Law, and a two-year Medical School.

James M. Sugihara, PhD 1947

Between 1948 and 1958, through two reorganizations, the School of Arts and Sciences expanded to become the College of Letters and Science. However, the composition was enormous, including departments of air science, anthropology, botany, chemistry, English, experimental biology, genetics and cytology, history, journalism, languages, mathematics, military science and tactics, naval science and tactics, philosophy, physics, political science, psychology, sociology, speech and theater arts, and zoology.

By the late 1960s, Pete D. Gardner, a prominent organic chemist at the U, had convinced the central administration that mathematics and physical sciences would be most effective if separated from the large, amorphous College of Letters and Science.

Therefore, on July 1, 1970, the College of Letters and Science was replaced by three new colleges: Humanities, Social and Behavioral Science, and the College of Science.

The disciplines of biology, chemistry, mathematics, and physics and astronomy were ideally consolidated in one cohesive academic unit. Gardner was appointed as the first dean of the College and served from 1970 to 1973.

The College of Science utilized seven buildings in 1970, including Chemistry (the north wing was finished in 1968), South Biology (completed in 1969), North Biology (the James Talmage Building), Life Sciences (built in 1920 and former home the of School of Medicine), the John Widtsoe Building (housed both the chemistry and the physics departments), the James Fletcher Building and South Physics. The total faculty consisted of about 80 tenured or tenure-track professors across all four departments.

Modern Day Powerhouse

Today the College of Science is one of the largest colleges within the University of Utah, offering undergraduate and graduate degrees in biology, chemistry, mathematics, and physics and astronomy, plus specialized degrees such as a doctorate in chemical physics.

The College supports nearly 2,000 undergraduate science majors and 475 graduate students and employs 143 full-time tenured or tenure-track faculty. The College also employs hundreds of adjunct and auxiliary faculty, postdoctoral fellows, research assistants, lab technicians, and support staff.

Last year, the College received about $36 million in external research funding, which is nearly seven percent of the University’s total external research revenue.

“The exceptional caliber of the College’s faculty has been a driving force behind the University’s ascension as a world-class research university,” says Peter Trapa.

The College has constructed new educational and research facilities in recent years, including the Thatcher Building for Biological and Biophysical Chemistry and the Crocker Science Center on Presidents Circle. The two buildings combined serve thousands of students each year with professional academic advising, expanded classrooms, and cutting-edge labs and instrumentation.

This year, a new project–the Stewart Building for Applied Sciences – was approved by the Utah legislature to renovate the historic William Stewart building and construct a 100,000 square-foot addition to house the Department of Physics & Astronomy and the Department of Atmospheric Sciences.

The proposed Applied Sciences Center will be 140,729 square-feet in size, consisting of 40,729 square feet of renovated space and 100,000 square feet of new construction. Undergraduate teaching labs, research labs, and classrooms will comprise 90% of the footprint and faculty offices will use 10% of the space. The new facility will support more than 40 faculty members, 200 undergraduate majors, 115 graduate students, and nearly 5,000 students taking STEM courses each year at the U.

Building the Future

As the 21st century unfolds amidst a global pandemic, the importance of science and mathematics will only continue to increase.  Our quality of life and economic future depends on the next generation of scientists. The College of Science is refreshing its strategic plan to further strengthen and enhance its academic and educational programs and its scientific leadership in the nation. Emerging priorities include:

  • Fully implement the Science Research Initiative (SRI) in the Crocker Science Center to serve 500 undergraduates per year with specialized research opportunities.
  • Establish new endowed faculty chair positions in each department, and increase the number of endowed professorships and graduate fellowships.
  • Continue to increase the amount of external research funding received in the College per year.
  • Invest in new and existing research directions to strengthen the College’s faculty.
  • Continue to advance our commitment to diversity, and foster inclusive communities of faculty, staff, and students.
  • Increase the six-year graduation rate of declared Science majors, and increase the total number of STEM graduates at the University.

Pearl Sandick, Associate Dean for Faculty Affairs, has led an effort that has distilled the input of faculty, staff, and students into a coherent plan for the future.

“The College will be prepared to meet the demands of the next 50 years in science education and research,” says Sandick. “We will see our way through the current crisis,  with an enhanced focus and commitment to student success, providing the facilities and rigorous training needed to boost the number of STEM graduates in Utah.”

The College is sincerely grateful for its numerous friends and supporters over the last 50 years. Each gift, large and small, propels the College forward. Please join us to write the next chapter, and the following 50 chapters, in the College of Science.   

Goldwater Winner

Lydia Fries

Lydia Fries awarded prestigious Goldwater Scholarship.

The College of Science is pleased to announce that Lydia Fries has been awarded a Goldwater Scholarship for 2020-21.

As a junior in chemistry, Lydia intends to obtain a Ph.D. in either organic chemistry or electrochemistry. She has done research in both Matt Sigman’s and Shelley Minteer’s groups, and Lydia is an author on two papers with both professors. She has worked on a variety of projects involving electrochemistry, palladium catalysis, and computationally focused projects. As an undergraduate she enrolls in many graduate-level courses and is a Teaching Assistant for Organic Spectroscopy I. Lydia was accepted to REU programs this summer, but has committed to an internship at Genentech and hopes that the current pandemic will have subsided by the time her internship is to begin mid-May.

With encouragement from high school teachers, Lydia followed her passion and her strong aptitude for STEM subjects, and ignored the warnings from her broader community that she shouldn’t pursue such an expensive and “useless” degree. She followed her heart and her brain to the University of Utah where she landed in the ACCESS program and was immediately surrounded by many intelligent and motivated women.

In addition to her studies, Lydia enjoys rock climbing and spending time outdoors, and is currently staying at safe at home in St. George.

The Goldwater Scholarship

As the result of a partnership with the Department of Defense National Defense Education Programs (NDEP), Mrs. Peggy Goldwater Clay, Chair of the Board of Trustees of the Barry Goldwater Scholarship and Excellence in Education Foundation, announced that the Trustees of the Goldwater Board have increased the number of Goldwater scholarships it has awarded for the 2020-2021 academic year to 396 college students from across the United States. “As it is vitally important that the Nation ensures that it has the scientific talent it needs to maintain its global competitiveness and security, we saw partnering with the Goldwater Foundation as a way to help ensure the U.S. is developing this talent,” said Dr. Jagadeesh Pamulapati, Director of the NDEP program, as he explained the partnership. With the 2020 awards, this brings the number of scholarships awarded since 1989 by the Goldwater Foundation to 9047 and a scholarship total to over $71M.

From an estimated pool of over 5,000 college sophomores and juniors, 1343 natural science, engineering and mathematics students were nominated by 461 academic institutions to compete for the 2020 Goldwater scholarships. Of students who reported, 191 of the Scholars are men, 203 are women, and virtually all intend to obtain a Ph.D. as their highest degree objective. Fifty Scholars are mathematics and computer science majors, 287 are majoring in the natural sciences, and 59 are majoring in engineering. Many of the Scholars have published their research in leading journals and have presented their work at professional society conferences.

Goldwater Scholars have impressive academic and research credentials that have garnered the attention of prestigious post-graduate fellowship programs. Goldwater Scholars have been awarded 93 Rhodes Scholarships, 146 Marshall Scholarships, 170 Churchill Scholarships, 109 Hertz Fellowships, and numerous other distinguished awards like the National Science Foundation Graduate Research Fellowships.

 

The Goldwater Foundation is a federally endowed agency established by Public Law 99-661 on November 14, 1986. The Scholarship Program honoring Senator Barry Goldwater was designed to foster and encourage outstanding students to pursue research careers in the fields of the natural sciences, engineering, and mathematics. The Goldwater Scholarship is the preeminent undergraduate award of its type in these fields.

 

by Anne Marie Vivienne,
Chemistry News - 03/30/2020

Ana Rosas

Ana Rosas


Every student’s story is one-of-a-kind, and Ana Rosas’ is no exception.

Rosas’ desire to become a doctor was deeply personal. She recalls her grandmother dying just one month after being diagnosed with untreatable and advanced liver cancer. “During my grieving, I thought about what, if anything, could have been done to prolong” her grandmother’s life. Was the late diagnosis due to her grandmother’s Hispanic heritage? Her community’s mistrust of physicians? Socio-economic barriers? “Though I was provided with encouragements,” she wrote in her recent application to medical school, including from select teachers at local Cottonwood High School, “I was also independently driven to learn and become equipped with tools needed to one day give back to my community.”

Ana arrived as a one-year-old in the United States with her mother and aunt, both of whom had been doctors in their native Colombia. But neither woman was eligible to practice medicine in the U.S. Instead, these two single mothers focused on raising their children. Being in a country that unexpectedly eliminated her career did not keep Ana's mother from sharing her expertise. Rosas remembers her mother conducting a hands-on anatomy class with a pig's head on the dining room table, even introducing surgical procedures.

At the University of Utah as a biology major intent on going to medical school, Rosas quickly realized that she didn’t have the same resources or opportunities, finding that she was on her own to navigate, for example, finding a lab to do research. She didn’t know anyone in the health sciences. Seventy emails later she landed in Dr. Albert Park’s lab at Primary Children’s Hospital in Salt Lake City where she worked with her team to better remove laryngeal cysts in infants. The learning curve was steep: literature reviews, in-text citations, and continually managing her share of “imposter syndrome” that started as early as high school where she was a minority. Her work with Park resulted in her presenting a poster at a national Otolaryngology meeting and a first authorship in a related prestigious international journal. “I have not had many undergraduates achieve so much in such a short time,” Park says of Rosas.

Now a senior at the School of Biological Sciences, Rosas has been busy working in not one but two labs. With Kelly Hughes she works with bacteria, specifically Salmonella, and focuses on identifying the secretion signal for a regulatory protein that is required for proper flagellar formation. “I mutagenize the protein,” she says, “by incorporating random amino acid substitutions at each amino acid position of the protein.” Along the way she looks for colonies that are defective. “This way I can send those colonies for sequencing and obtain data that can tell what amino acids are essential for the proper secretion of the protein” under study.

Her second lab experience with Robert C. Welsh in the School of Medicine's Department of Psychiatry brings Rosas' career ambitions back full circle to her heritage and her desire to give back to her community, which is often under-served by the medical profession and under-represented in institutions of higher learning. Using imaging equipment, she and her colleagues are developing a diagnostic and prognostic tool to determine where ALS (Alzheimer’s) patients are in the progression of the disease. Related to that is lab work of another kind. In the “engagement studio” at University Neuropsychiatric Institute (UNI) she is gathering feedback from minority groups to see what obstacles—from language barriers to mistrust of medical authorities–impact their participation in research. “We want to figure out what researchers can do to encourage their cooperation,” she says.

At the same time, while demonstrating that she’s not only successfully balancing on that once precipitous learning curve, Rosas has demonstrated that she’s clearly ahead of it. Currently she is treasurer of the InSTEM group on campus and has helped initiate the new Health Sciences LEAP program which does science outreach in high schools. “I want to help minorities like me,” says Rosas, “better navigate college for the first few years.”  Tanya Vickers who directs the ACCESS program for the College of Science, is most certain she will do exactly that, referring to Rosas as a “remarkable young woman.”

Rosas has indeed come a long way from anatomy lessons on her mother’s kitchen table. Applying to medical schools has provided the chance to reflect on her journey and, considering the barriers and uncertainty she first felt, that journey has proven to be an auspicious one.

 

by David G. Pace