Late Withdrawals

LATE WITHDRAWALS


College of Science Petitions for Exception to Policy

You must be a declared major in the College of Science to submit petitions for Exception to Policy to this college. All undecided students go through the Academic Advising Center.

The University has provided means for students to be granted exceptions to University policy. This allows students the chance to petition certain policies for non-academic reasons such as illness, military leave, family emergencies, etc.

Retroactive Petition Form (pdf)

Current Term Petition Form (pdf)

 

Exceptions to policy include withdrawal from a course after the withdrawal deadline for the same term, retroactive withdrawal, retroactive registration, section change or cross-referenced course, late registration request, change in CR/NC status, retroactive change in credit hours, etc. This must always be done through the Dean's Office of the college of the student's major.

To petition University policy you must obtain the necessary forms online, from the Registrar's office (250 SSB) or the College of Science Student Affairs Office (214 CSC). The necessary forms and all supporting documentation must be received before the Dean's Office will consider your petition. Once your forms and supporting documentation has been received it will be reviewed within 7 days and a recommendation will be sent to the Registrar's Office.

If you have questions contact Lisa Batchelder by email at lisa.batchelder@utah.edu or 801-581-3374.

Emily Bates, BS’97

It just so happened that the day that the University of Colorado closed down its labs, including Dr. Emily Bates’, she was in labor giving birth to her second child. “I was having conversations with my students about what we needed to do from the hospital bed,” she says. “My husband could not join me for the birth of our son. Our daughter couldn’t meet her brother at the hospital. As soon as it looked like our son and I were healthy, we were sent home.”

Needless to say, the research in Bates’ lab where she is an Associate Professor in the Department of Pediatrics, (Developmental Biology) at the University of Colorado School of Medicine, slowed considerably. “We have not had the opportunity to bring new undergraduate and high school interns into the lab this summer like we usually do, but we have continued to work with one high school student and one undergraduate doing some data analysis from home this summer.”  The lab currently hosts four graduate students as part of the team, but only two people are allowed in the lab at a time.”

At the University of Utah the ACCESS program was key to her success, providing her a cohort of women who were friends and study partners. Established in 1991, ACCESS, a College of Science program now in its 30th year, provides freshmen and transfer students, from a variety of backgrounds, with a scholarship and a supportive path into STEM degrees and careers. For Bates, the program encouraged, she says, “role models to normalize being a woman in science.”

While a scholarship and the rigorous undergraduate research program were main factors in her selection of the School of Biological Sciences, she recalls how fortunate she was to get the right research mentor.  That mentor was Dr. Anthea Letsou in Human Genetics on the University Health campus. “I learned how to test a hypothesis from her, how to use flies to learn about developmental signaling, and how to read a scientific paper.” Perhaps equal to the actual science, Bates learned how to present her research to others. Letsou, she says, “had more confidence in my potential as a scientist than anyone I had met. It was because of her encouragement that I applied to top tier graduate schools.” The whole experience—of the research mentor coupled with ACCESS—gave her confidence and “really jump started my career.”

Photo credit Andrew Silverman

It takes a combination of targeted programs, mentoring and true grit on the part of every student to succeed as Bates did at U Biology. Along the way, she ran cross country for the U her freshman year before turning to marathons (She’s run 18 of them, including as a US representative in Kenya.) Bates credits the unique environment at the U which converged for her, facilitating her graduation in 1997 with a BS and her acceptance to Harvard University for graduate school where she earned her PhD. Returning to Utah, she taught at Brigham Young University for four years before accepting her current position at Colorado.

That was, of course, before COVID-19 reared its head and certainly changed the vector of how she is pursuing her career in pediatrics. She advises students to find a research opportunity with a good mentor and “stick with it,” even during the pandemic. There are skills that can be acquired “at home,” she continues, “that would be useful in labs as soon as they open. For example, learning to critically read a scientific paper, or write programs (in Matlab, R, or Python) to interpret data would be useful in a lot of labs right now.”

In the meantime, she and her family are settling in on the other side of the Rockies from Salt Lake City until a “new normal” makes its appearance. “Luckily,” she says of that singular time in the hospital virtually alone and delivering a child, “my mom had flown in before everything shut down, so she could help us for the first couple of weeks. But other family members have not felt safe flying to visit and meet the newest addition.

“Personally, that has been the hardest part of this pandemic.”

      You can read about the history of the ACCESS program here

 
by David Pace
 

Arie Sitthichai Mobley

When Arie Sitthichai Mobley (BS'2000) began teaching at a small liberal arts university in a department for undergraduate neuroscience, she says there were many books on stem cells, but they were either too broadly or narrowly focused, or too advanced for an undergraduate course. The lack of an appropriate textbook motivated her to write her own aimed at undergraduate neuroscience students. Her experiences in the lab and classroom coalesced in a clear vision of what undergraduates needed to learn about stem cells and neurogenesis as well as the level of information required. The book is designed to help students appreciate the potential, and understand the limitations of stem cells, while providing a basic knowledge of stem cell physiology.

Science Direct, in a review of the book, reported that "this early graduate level reference describes [neural stem cells'] physiology and potential for medicine and provides students with fundamental stem cell information. An overview of stem cell sources in the human body and a brief mention of relevant diseases provide context for the value of this knowledge."

Mobley earned her diploma from South Sevier High School in Monroe, Utah in 1991 and, after graduating with a bachelor's from the School of Biological Sciences, continued at the University of Utah, earning a PhD in neuroscience. Her dissertation was on olfactory sensory neurons of the squid, Lolligungula brevis. (The squid were shipped to her in large bags of water from Galveston, Texas.) Following her graduate work at the U, Mobley did her post doctorate at Yale University where she first developed an interest in adult neurogenesis in disease states. From there she became an assistant professor at Western New England University (WNEU) in Springfield, Massachusetts.

Text book authored by Bio Alumna Arie S. MobleyAfter teaching for four years, she moved to Bar Harbor, Maine, where she is currently associate study director at the independent, nonprofit biomedical research The Jackson Laboratory. The Lab is dedicated to contributing to a future of better health care based on the unique genetic makeup of each individual. Mobley's work is focused on understanding and investigating age-related olfaction deterioration that often precedes neurodegenerative disease.

Her research has been published in journals such as the Journal of Neuroscience, Journal of Comparative Neurology, Trends in Neuroscience, Neurobiology, Aging and PNAS. Dr. Mobley has received several grants including the Ruth Kirstein National Research Service Award (NRSA) at the graduate level under Dr. Mary T. Lucero and at the postdoctoral level under Dr. Charles Greer. She went on to obtain an NIH Small Grant Program (R03) award that was instrumental in beginning her independent research program at WNEU.

"In my position as a Study Director I interface directly with customers to assess customer needs and ensure accurate capture of project specifications in order to develop detailed project plans," Mobley writes on The Jackson Lab's website. "I ensure that plans are successfully tracked and seamlessly executed by ensuring that staff understand and are compliant with all policies and procedures to ensure the most efficient operation, and provide customers with the highest quality scientific service.

"I am uniquely positioned to develop and execute strategic innovation and improvement initiatives, with the objectives to increase capacity, expand product offerings, improve service quality and improve customer experience. I participate in research validation data analysis and support implementation of new techniques and processes."

With her husband Michael, the Mobleys have one daughter.

 

 
by David Pace
 

Clifford Stocks

In these uncertain times when “the new normal” of our lives has yet to emerge, SBS alumnus Clifford Stocks (BS’80) opens a window to fresh air on the COVID-19 pandemic. That updraft comes from his scientific orientation and is underscored by his enduring ambition to use his training in biology and beyond to elevate the health of his fellow humans.

“At the end of the day the COVID-19 pandemic is a blip,” he reminds us. “Yes, it caused and will cause many premature deaths and a disruption of lifestyle, and in many cases irreversible economic burden. However, the biomedical complex in the world has become so sophisticated we will have treatment solutions and a vaccine in short order.” He continues on the updraft with a coda:  “And the world will go on as before, but hopefully this pandemic will help people remember that life can be fleeting and to stop and think about what is important to them. And to let those close to them know they are loved.”

It’s a take on this singular time that the world desperately needs right now, a perspective rooted in valuing not only science but the inviolable drive of people to persevere and to assemble ourselves into the collaborative army of our common humanity.

Stocks knows something about perseverance in both the clinical realm and in that of business. Raised in Wyoming before arriving in Salt Lake City, he wrestled in high school and received a scholarship to the University of Utah. “I wrestled four years under coach Marvin Hess,” he says. “This was the only way I could afford to attend college.”

His memories of the U include warm summer nights, trips to the desert—"the heavy focus on the outdoors and exploring the beauty and wonder of Utah”–epitomized by the slickrock country of Moab where Stocks was born. And his time studying biology gave him the opportunity to learn a range of topics in the biological sciences and to determine that he would “dedicate my life's work toward applying biology to help humankind.”

Not surprisingly, that dedication settled in Stocks largely because of important mentors while at the School of Biological Sciences, including Dr. Mario Capecchi, who would later be awarded the Nobel Prize, and whose biochemistry class “inspired in me a love and respect for the power of molecular biology.”

Dr. Robert Vickery, now SBS professor emeritus, was another formative figure for the budding scientist. He “taught evolution and cemented for me the importance of

Clifford & Renee Stocks

recognizing natural selection processes in many biological systems, says Stocks, “including the ability of cancer to form resistance and the power of differentiation in the immune system to combat infection, disease and neoplasms.”

But it was during his senior year as research technician in the laboratory of Seth Pincus, MD in the Department of Immunology at the U’s Medical Center that the young researcher found a home in science. Stocks stayed on there for four years following his graduation from the U in 1980.

After earning an MBA at the University of Chicago where he also did research in molecular genetics and cell biology, Stocks transitioned from the bench to the business side of biotech when he landed his dream position and stayed for 15 years at ICOS Corporation (before it was acquired in 2007 by Lilly and Company). Following other professional stops Stocks founded Seattle-based biotech company OncoResponse, and as CEO has narrowed his broad range of research interests to immuno-oncology. The company currently has several antibodies directed at modulating immunosuppression of the tumor microenvironment in pre-clinical development and is working toward increasing immunotherapy offerings and improving the lives of cancer patients.

“I have always loved rivers and mountains,” says the former wrestler and kayaker, turning to his life outside the world of the lab and of business. “During the '80s and '90s I was part of a world class whitewater kayaking team that conquered several first descents of rivers in North and South America. Today Stocks is an avid fly fisherman which keeps him near rivers in the mountains.  Along with his wife of 25 years, Renee, and their five children they remain focused on academics, athletics and the outdoors.

“Life and career are a journey so make sure to enjoy it and do not let obstacles weigh you down,” he advises. “Oh, and wear your mask to protect others from the spread of COVID-19, and expect others to do same, to protect you and your loved ones.”

The pandemic may be a “blip,” in the organic scheme of things, but it is also, potentially, a transformative opening for inquiry, discovery and resolution. It is an opportunity for all of us, especially, perhaps, for those at the forefront of public health and in the science-inflected imaginations of those like Clifford Stocks.

 
by David Pace, photo by Cassie Redstone
 

Bill Jack

Bill Jack’s undergraduate experience at the University of Utah’s Chemistry Department was foundational and flavored his graduate school and professional path. In hindsight, Bill also recognizes the influence of the few humanities courses he participated in where discussions on James Joyce and American Literature altered his perspective on the world. His only regret about his undergraduate years here at the U, is that he did not slow down and take advantage of broader educational opportunities to learn as much as he could in both the humanities as well as in chemistry.

During one undergraduate summer, Bill was inspired by a single sentence in a physics course that would influence the way he approached the world. The instructor, Dr. Swaggart, began his class by telling the students, “I’m going to teach you about a new way to look at the world.” Bill integrated this sentiment in a variety of different subjects since then, whether in math, social studies, literature, chemistry, anything really. “It’s a different way to see the world, and that broad background just increases your appreciation of the world,” says Bill.

Bill’s educational foundation lead him to a graduate program at Duke University where he thought he would begin a career as a physical biochemist after “tailing” Sidney Velick all summer, but, in an effort to simplify his newlywed life, he asked to work in a lab which quickly altered his path. He ended up being a graduate student with Paul Modrich researching an enzyme that ended up being one of the enzymes that is foundational at New England Biolabs--the only “real” job he’s ever had after he completed his graduate and postdoc work.

Bill has been working at NEB for the past 31 years, and now enjoys the freedom to take risks in his research. He confirms that the company’s founder is absolutely right when he claims that, “New England Biolabs scientists can’t wait to get to work each morning to see how their experiments turned out.” Bill’s latest project is admittedly risky, but that’s what makes it so exciting. The possibility that something might work as he tries to wrap his mind around different ways of analyzing and changing the environment to find a solution for such a fascinating biological phenomena keeps him pushing new boundaries.

Bill is collaborating with a team at Columbia University with an expertise in the biology of the DNA sequence he’s investigating. They’re growing, breaking, and piecing back together the sequences to try to replicate in a test tube the DNA splicing that happens naturally. “I believe that there will be steps along the way that we will have insights into other organisms, other processes whether they be normal ones or ones that cause disease, and there’s also even prospects from a commercial perspective that some of the enzymes involved will be useful in advancing other molecular biology techniques. The company I work for takes enzymes that occur in nature, pulls them out, and characterizes them so they’re available in other workflows to prepare DNA sequences.”

 
by Anne Vivienne
 

Griffin Chure

Griffin Chure’s favorite memory of his time at the U was working in Dr. David Blair’s research lab. “During the summers, when class-load was low,” he says, “we characterized the flagellar protein of FIhE, a protein of unknown function." His interactions with Blair and Dr. Sandy Parkinson “firmly set” him on a path towards a career in research.

With a base of confidence provided by mentors in the School of Biological Sciences (SBS), Chure found a natural segue into biophysics, propelled by a course he took from Dr. Saveez Saffarian in 2012. That work “solidified my deep interest in the intersection of biology and physics,” he says, the area in which, after graduation with honors in 2013, he spent his entire graduate career, culminating in 2020 with his PhD in Biochemistry and Molecular Biophysics, at the California Institute of Technology Pasadena.

Griffin Chure

Currently, Chure is a postdoctoral scholar in the Department of Applied Physics at Caltech while next year he will be moving to Stanford University as a National Science Foundation Postdoc Research Fellow to work with Prof. Jonas Cremer. There he will help develop and experimentally test physiologically-grounded mathematical models of bacterial evolution.

Chure’s journey started in the small Green River-side town of Jensen (population 412), seventeen miles from the Colorado state line in Uintah County. “Being raised in rural Utah,” he says, “the option to attend a university with a strong standing in the biological sciences and [to] remain close to family and nature made my choice to attend the U an easy one.” SBS was clearly lucky to get Chure as he continues advancing academically at some of the most prestigious research universities, which like the U, are members of the American Association of Universities, composed of the nation’s top research universities.

His advice to students is to explore science and to do it outside of their comfort level. “It is also important,” he says, “to be sure to be involved in science outside the classroom.” It wasn’t until his graduate studies, he explains, that he was “exposed to the beauty that is probability theory, linear algebra, dynamical systems, and other subfields.” That coupled with extensive training in computer programming “foundationally changed the way I pursue research in biology. The future of biology will be written in the language of mathematics, and quantitative methods should become a central feature of biology education at the U.”

Looking at the larger picture of society and science, Chure is worried that we “live in a time where objective truth and reality seems to be losing its importance with the general populace, even to the point where wearing face coverings has become viewed as a political statement.” Work hard, he says, to convey the science you’re doing to the general public. Even beyond the pandemic, he believes, the only way to fight the erosion of trust in science is to help improve the communication.

Outside of research the recently-minted PhD from Utah has a passion for graphic design and art which dovetails nicely with the work of his wife Bárbara de Araujo Soares who writes Hollywood screenplays. They feel fortunate to have gainful employment during the pandemic. “Going forward, the biggest impact this virus will (hopefully) have on our world,” Chure says, “will be a paradigm shift on how we view and support social causes such as health care, homeless and veteran services, and equitable income support.”

 

 

 
by David Pace
 

Jeffrey Webster

 

Jeffrey Webster (BS'81)

A native of Chagrin Falls, OH, Jeff Webster, MD, FAAOS, found himself as an undergraduate at the University of Utah for "not the most mature reason, but it's true": the easy access to the world class skiing. He might be surprised at how common the denominator is for arriving freshmen who are held in rapture by the opportunities for outdoor recreation in the nearby Wasatch Mountains.

Whether skiing was an adjunct to the degree he sought in biology as a pre-med student ... or the reverse, will remain obscured for now. What he did find in Salt Lake City in the late 70s was that the U was his crucible for a successful life. "The U made me realize that school and life aren't easy, that you have to do solid, honest work to forge your path."

That path culminated in his career as an orthopedic surgeon, currently at the Reno Orthopedic Clinic. After graduating from the U, he attended Wayne State University for his MD followed by a residency at Indiana University. A sports medicine fellowship at Methodist Hospital in Indianapolis then propelled him back to the west near another ski town, this time at the foot of the Sierra Nevada.

While in Utah the slopes had to compete with another passion of Webster's: his two years on the swim team between 1979 and the year he graduated in 1981. "Under coach Don Reddish I made lifelong friends, learned many life lessons, and met my wife Bridget Duncan Webster of over 36 years now." In the off-season he found himself at the bench doing research. I "did a student project," he explains, "self designed, regarding anabolic steroids in rats. Doc [James] Lords supervised. [It] was never published or presented, but was fun to do. The rats surely would have disagreed with the 'fun to do' part." Typical of the School of Biological Sciences' reputation for the informality with which world-class faculty and students collaboratively interact, Webster remembers sitting more than once in Lords' office where they would "shoot the breeze, talk biology, sports, whatever."

As for today, the clinic where Webster works has been, for over sixty years, a magnet for some of the best and brightest in orthopedic medicine. As one of 30 physicians, the Northern Nevada clinic boasts "the kind of comprehensive, world-class care typically only seen in major metropolitan areas." And, along with all medical practitioners right now, Webster, a Fellow of the American Academy of Orthopedic Surgeons, acknowledges the current challenges in the field because of the Covid-19 pandemic. "The impact has been tremendous, and not all in a good way," he says. "The daily inconveniences are certainly a nuisance, but tolerable. It’s the political malfeasance that’s concerning to me." Even so, he muses, the "virus situation has brought family and friends closer, allowing us to appreciate the most important things in life."

His advice to undergraduates currently navigating their education while wearing masks, social distancing and living with the uncertainty of what's next during this singular time is philosophical:  "Be humble, choose your goals, and work diligently in accomplishing them. The basic tenets of western civilization, Christianity for example, are extremely important and powerful. Lead a virtuous life. ...While not very religious per se, I’ve become more spiritual with time."

Dr. Webster quips that he still loves to ski, though he isn't ready to say if Tahoe is as good as "the greatest snow on earth" of Alta and Snowbird. Fortunately, for both this Ohio native and the School of Biological Sciences, they still share the same Great Basin, across the west desert and the salt flats, connected still by the legacy of the University of Utah.

 

 
by David Pace
 

HIV Microscopy

HIV Microscopy


Ipsita Saha, graduate research assistant

Pioneering method reveals dynamic structure in HIV.

Viruses are scary. They invade our cells like invisible armies, and each type brings its own strategy of attack. While viruses devastate communities of humans and animals, scientists scramble to fight back. Many utilize electron microscopy, a tool that can “see” what individual molecules in the virus are doing. Yet even the most sophisticated technology requires that the sample be frozen and immobilized to get the highest resolution.

Now, physicists from the University of Utah have pioneered a way of imaging virus-like particles in real time, at room temperature, with impressive resolution. In a new study, the method reveals that the lattice, which forms the major structural component of the human immunodeficiency virus (HIV), is dynamic. The discovery of a diffusing lattice made from Gag and GagPol proteins, long considered to be completely static, opens up potential new therapies.

When HIV particles bud from an infected cell, the viruses experience a lag time before they become infectious. Protease, an enzyme that is embedded as a half-molecule in GagPol proteins, must bond to other similar molecules in a process called dimerization. This triggers the viral maturation that leads to infectious particles. No one knows how these half protease molecules find each other and dimerize, but it may have to do with the rearrangement of the lattice formed by Gag and GagPol proteins that lay just inside of the viral envelope. Gag is the major structural protein and has been shown to be enough to assemble virus-like particles. Gag molecules form a lattice hexagonal structure that intertwines with itself with miniscule gaps interspersed. The new method showed that the Gag protein lattice is not a static one.

The Saffarian Lab in the Crocker Science Center

“This method is one step ahead by using microscopy that traditionally only gives static information. In addition to new microscopy methods, we used a mathematical model and biochemical experiments to verify the lattice dynamics,” said lead author Ipsita Saha, graduate research assistant at the U’s Department of Physics & Astronomy. “Apart from the virus, a major implication of the method is that you can see how molecules move around in a cell. You can study any biomedical structure with this.”

The paper published in Biophysical Journal on June 26, 2020.

Mapping a nanomachine.

The scientists weren’t looking for dynamic structures at first—they just wanted to study the Gag protein lattice. Saha led the two year effort to “hack” microscopy techniques to be able to study virus particles at room temperature to observe their behavior in real life. The scale of the virus is miniscule — about 120 nanometers in diameter—so Saha used interferometric photoactivated localization microscopy (iPALM).

First, Saha tagged the Gag with a fluorescent protein called Dendra2 and produced virus-like particles of the resulting Gag-Dendra2 proteins. These virus-like particles are the same as HIV particles, but made only of the Gag-Dendra2 protein lattice structure. Saha showed that the resulting Gag-Dendra2 proteins assembled the virus-like particles the same way as virus-like particle made up regular Gag proteins. The fluorescent attachment allowed iPALM to image the particle with a 10 nanometer resolution. The scientists found that each immobilized virus-like particle incorporated 1400 to 2400 Gag-Dendra2 proteins arranged in a hexagonal lattice. When they used the iPALM data to reconstruct a time-lapse image of the lattice, it appeared that the lattice of Gag-Dendra2 were not static over time. To make sure, they independently verified it in two ways: mathematically and biochemically.

80 nm sections of cells (2020 Biphys Journal) - Saha & Saffarian

Initially, they divided up the protein lattice into uniform separate segments. Using a correlation analysis, they tested how each segment correlated with itself over time, from 10 to 100 seconds. If each segment continued to correlate with itself, the proteins were stationary. If they lost correlation, the proteins had diffused. They found that over time, the proteins were quite dynamic.

The second way they verified the dynamic lattice was biochemically. For this experiment, they created virus-like particles whose lattice consisted of 80% of Gag wild type proteins, 10% of Gag tagged with SNAP, and 10% of gag tagged with Halo. SNAP and Halo are proteins that can bind a linker which binds them together forever. The idea was to identify whether the molecules in the protein lattice stayed stationary, or if they migrated positions.

Rendering of Gag molecules proteins diffusing across a virus-like particle - Dave Meikle/Saffarian Lab

“The Gag-proteins assemble themselves randomly. The SNAP and Halo molecules could be anywhere within the lattice—some may be close to one another, and some will be far away,” Saha said. “If the lattice changes, there’s a chance that the molecules come close to one another.”

Saha introduced a molecule called Haxs8 into the virus-like particles. Haxs8 is a dimerizer—a molecule that covalently binds SNAP and Halo proteins when they are within binding radius of one another. If SNAP or Halo molecules move next to each other, they’ll produce a dimerized complex. She tracked these dimerized complex concentrations over time. If the concentration changed, it would indicate that new pairs of molecules found each other. If the concentration decreased, it would indicate the proteins broke apart. Either way, it would indicate that movement had taken place. They found that over time, the percentage of the dimerized complex increased; HALO and SNAP Gag proteins were moving all over the lattice and coming together over time.

A new tool to study viruses.

This is the first study to show that the protein lattice structure of an enveloped virus is dynamic. This new tool will be important to better understand the changes that occur within the lattice as new virus particles go from immaturity to dangerously infectious.

Saveez Saffarian and Ipsita Saha

“What are the molecular mechanisms that lead to infection? It opens up a new line of study,” said Saha. “If you can figure out that process, maybe you can do something to prevent them from finding each other, like a type of drug that would stop the virus in its tracks.”

Saveez Saffarian, professor in the Department of Physics & Astronomy at the U, was senior author on the paper.

 

by Lisa Potter first published in @theU

Also published in Eurekalert
 

COVID-19

Science Research Initiative


COVID-19 Research STREAM

Frederick R. Adler, Professor of Mathematics and Biological Sciences
Lindsay Keegan, Assistant Professor of Epidemiology

 

Dr. Fred Adler

In addition to disrupting about every aspect of normal life, the COVID-19 epidemic has brought unprecedented attention to the importance of mathematical modeling and data analysis. The tools needed to understand and predict this epidemic run the gamut from differential equations and large simulations, with methods coming from statistics and applied mathematics. Data are noisy and complicated, and raise many questions about the challenges of counting cases, tracking their sources, understanding viral spread, and quantifying stresses on the health care system and the economy.

We will access the vast quantity of available data, and use them to study the spread and genetics of this virus. Recent studies have shown that the spike protein, that lives on the outside of the virus and is critical for it to enter cells, has mutated in ways that might affect its ability to infect people.

Our SRI team will take an interdisciplinary approach to this aspect of the pandemic. Students will learn the skills needed to download and visualize genetic data using R and python, link these data with fundamental mathematical models of epidemiology, evolution, and the physics of viral entry. Working in teams, we'll investigate hypotheses about the causes consequences of viral evolution, and learn to effectively communicate and display these results to audiences ranging from scientists and decision-makers to the general public.

 

 

>> BACK <<