College Merger

College Merger


College of Mines and Earth Sciences to merge with College of Science.

The University of Utah College of Mines and Earth Sciences will merge with the College of Science beginning July 1, 2022, a move that will unite well-funded programs, build synergy and cooperation between faculty and create a much stronger base for science and mathematics education at the U.

Deans Darryl Butt of the College of Mines and Earth Sciences and Peter Trapa of the College of Science have worked with university administration and members of both colleges to plan the details of the merger. The College of Mines and Earth Sciences will retain its name and identify as a unit of the College of Science and all faculty, students, buildings and research programs in both colleges will continue in the combined unit.

President Taylor Randall

“Both of these colleges are leaders in student enrollment and research, providing valuable direction on some of the most important issues we face today. I am confident this union will elevate both programs and provide more opportunities for collaboration and student access to classes.”

 

“Given the incredibly strong connections and research collaborations between the two colleges already, this proposed merger brings a huge number of opportunities for students and faculty,” said William Anderegg, associate professor in the College of Science’s School of Biological Sciences. “The merger opens doors to new educational programs, student research opportunities and research avenues that should elevate the U’s prominence and impact.”

How it happened

The two colleges have a long history of collaboration, but as they came together in 2018 to begin planning for a new Applied Sciences Building, which will bring together departments from both colleges, the deans and faculty members discussed interdisciplinary collaborations and joint courses of study, leading to the proposal of merging the colleges.

In developing the merger plan, the colleges have met with university administrators and faculty and staff from both colleges. Each department in both colleges conducted an advisory vote from their faculty, with a strong majority of voting faculty being in favor of a merger.

“The alignment of COS and CMES to form a stronger and more synergistic organization would elevate the reputation, and likely national rankings, of the respective programs as the joined faculty become more comparable in size and scope to many peer colleges in the Pac-12,” said Butt. “The union will strengthen the STEM fields at the U, and provide a greater student experience through enhanced advising, tutoring, research opportunities and interdisciplinary programs.”

What will and won’t change

The yearlong Phase 1 of the merger, which begins July 1, 2022, involves integrating non-academic functions of the College of Mines and Earth Sciences, such as accounting and marketing. The deans will work to enhance communication and collaboration in the united college, and continue working with faculty, staff, students and university leadership to streamline the merger.

Students attending classes in either of the colleges this fall likely won’t notice anything different–buildings, faculty and programs will remain as they are. Students working towards existing degrees will still receive those degrees from their respective colleges. No programs will be changed and no staff positions will be eliminated.

Leadership will also look much the same, with department chairs remaining in place, and Butt remaining as dean of the entities comprising the College of Mines and Earth Sciences as the colleges consolidate.

After that, as Phase 2 begins, the unified college will report to a single dean and changes to the governance structure of the college, developed in Phase 1, will be finalized and submitted to faculty, student and administration stakeholders for final approval.

Future endeavors, such as a major in earth and environmental science currently under consideration, will utilize resources from both colleges. But the College of Mines and Earth Sciences will remain as a distinct unit within the College of Science, strengthened by the merger and well-positioned to meet its future mission to the state of Utah as the land grant school of mines.

“We are thrilled to unite with the College of Mines and Earth Sciences, with its tradition of hands-on education and impactful research,” Trapa said. “As a combined college, we’ll be positioned to prepare students for an interdisciplinary world.”

“This is an innovative solution to combine the resources of two historic colleges in a way that preserves the identities and missions of both while elevating them to the top tier of science colleges in the United States,” Butt said.

Get to know the colleges

The College of Science and College of Mines and Earth Sciences are two of the oldest colleges at the U, owing to the early missions of the university to educate Utah’s teachers and the leaders of the mining industry in the state.

The roots of the College of Mines and Earth Sciences extend back to 1901 with the establishment of the State School of Mines. Instruction in earth science and mining engineering goes back even further, to at least 1871. The college’s current name was adopted in 1988 and it currently consists of departments of geology and geophysicsatmospheric sciencesmining engineering and metallurgical engineering (jointly administered with the College of Engineering). The Global Change and Sustainability Center and the University of Utah Seismograph Stations, a network of seismometers throughout the West, are also housed in the college’s Frederick A. Sutton Building. The college has become one of the most research-intensive colleges on campus, with average annual per faculty research awards exceeding $300K. With six majors and four degrees to choose from, students in the college study everything from the nature of snow and ice to processes governing Earth’s processes to the methods and processes for producing critical materials.

The current incarnation of the College of Science was formally organized in 1970 but has roots in science instruction that dates back to the founding of the University of Utah in 1850. It includes departments of mathematicsphysics and astronomychemistry and the School of Biological Sciences—a progression of disciplines that encompasses the structures and processes of life, the universe and, well, everything.

As one of the largest colleges at the U, the College of Science includes around 2,100 undergraduate students and nearly 500 graduate students, with 143 faculty members. In FY 2021, the college received $36 million in research funding.

In recent years the college has renovated the George Thomas Building into the Crocker Science Center and is planning the renovation and expansion, in collaboration with the College of Mines and Earth Sciences, of the William Stewart Building into the 140,000-square-foot Applied Sciences Building.

Learn more about the College of Science and College of Mines and Earth Sciences.

 

by Paul Gabrielsen, first published at @theU.

 

>> HOME <<

10-year Plan

10-year Plan


U astronomers tackle decade’s biggest questions.

Astronomers and astrophysicists at the University of Utah have been driving discoveries in the field for years. The innovative research from the Department of Physics & Astronomy is making an impact in all areas that the national community has determined as priorities in a once-in-a-decade report that guides the direction of astro-research for years to come.

This Decadal Survey was commissioned by the National Academies of Sciences, Engineering and Medicine to identify goals and challenges for the exploration of the cosmos. Unraveling the secrets of the universe requires vision and extensive planning—astronomers and astrophysicists use massive ground observatories and sophisticated space telescopes for projects that need years of preparation. The guidance of the decadal survey is crucial to this effort.

Released in early November, the decadal survey highlights three key research areas ripe for discovery: “Worlds and Suns in Context” focuses on stars and planets; “Cosmic Ecosystems” describe galaxies and the cosmic web they form; and “New Messengers and New Physics” provides a new view of the universe through high-energy particles, gravitational waves, and deep sky surveys. Scientists in the U’s Department of Physics & Astronomy are leaders in each of these areas.

Kyle Dawson

“Over the past several decades, department faculty pushed forward on an increasing number of research areas in astronomy, astrophysics and particle physics. Now these separate initiatives are coming together, in focus, and beautifully aligned with the decadal survey’s top priorities.”

 

Kyle Dawson, professor of physics and astronomy, will chair the Astronomy and Astrophysics Advisory Committee (AAAC) in the first full year following the release of the decadal survey. The AAAC is a national panel of experts who advise the National Science Foundation, NASA, and the Department of Energy toward issues within the fields of astronomy and astrophysics that are of mutual interest. “We meet regularly with leadership from the federal agencies that sponsor research in astronomy and astrophysics. The decadal survey gives our panel a guide to work with those agencies to assess progress toward new programs that will allow the United States to maintain its role as a leader in astronomy and astrophysics research.”

Over the past several decades, department faculty pushed forward on an increasing number of research areas in astronomy, astrophysics and particle physics, notes Professor Dawson. “Now these separate initiatives are coming together, in focus, and beautifully aligned with the decadal survey’s top priorities.”


Worlds and Suns in Context

The sun hosts a rich system of planets, from the massive gas giant Jupiter and the icy dwarf planet Pluto, to Earth, the only body in the universe known to sustain life. Recent observations from space and the ground have revealed thousands of other worlds around distant stars. Some are so large as to dwarf Jupiter, others appear to be exotic water worlds. A precious few may even harbor life. A key priority of the decadal survey is to understand the nature and origin of these worlds and the stars that host them. Driving this quest is a profound question, whether we are alone in the cosmos.

Mock-ups from a fast-migration sim (Jupiter through a massive pebble disk) w/planets + host star added.

The Sloan Digital Sky Survey, (SDSS), an international effort to chart the cosmos, is mapping stars across our galaxy, the Milky Way. Scientists at the U are in leadership roles in this large-scale, on-going collaboration. With detailed measurements of millions of stars, SDSS will provide an understanding of their chemical composition, how the elements are spread throughout the galaxy, and the connection between stars, their composition and the planets they host. This world-class project is integral to the decadal survey’s scientific goals.

Research at the U also focuses on planet formation, how worlds emerge from the gas and cosmic dust that encircle all observed young stars. Simulations run on high-performance computers track this process, how planetary building blocks come together, sometimes through violent collisions, to grow into the planets like those in our solar system and around other stars in the cosmos.


Cosmic Ecosystems

Looking beyond the stars visible in the night sky, astronomers have discovered a wealth of exotic objects, including neutron stars, with the mass of the sun packed into a region the size of a small city, and black holes, where matter is so concentrated that space and time warp to form an event horizon, from which nothing, not even light, can escape. Telescopes also reveal galaxies, like our own Milky Way, with hundreds of billions of stars, even supermassive black holes in their centers, strewn across space. Neighboring galaxies, drawn together by gravity, form enormous clusters, the most massive objects in the universe. They are permeated by dark matter, an unidentified, ethereal substance known only through its gravitational influence. Together with galaxies and galaxy clusters, the dark matter sea forms patterns – knots, sheets and walls in a vast cosmic web. A second top priority of the decadal survey is to understand this cosmic web, the structures it contains, and how these structures formed out of the hot, dense early universe.

At the U, researchers are studying the ecosystems that produced this diversity of cosmic structure. With theoretical and computer studies, as well as observations from the ground and space, Utah faculty are probing the nature of galaxies, the central supermassive black holes they harbor, and how stars, gas, and dark matter interact to produce the cosmic structures we observe today. Research on nearby small galaxies, including satellites of our Milky Way and other nearby massive galaxies, will help us understand their formation histories and the role of dark matter in that formation. Upcoming observations with NASA’s James Webb Space Telescope, the most sophisticated observatory ever launched, will help university researchers discover supermassive black holes in the central regions of galaxies to learn how these exotic beasts formed. At larger distances and earlier times, large clouds of gas – the precursors of galaxies– provide key diagnostics for researchers at Utah to identify the underlying physics of galaxy formation. Galaxy clusters, with up to thousands of galaxies bound together, are also in focus at Utah as researchers take advantage of NASA’s NuSTAR mission to study the hot X-ray emitting gas trapped in these massive objects. These separate research threads are weaving together a more complete and compelling picture of cosmic structure formation.


New Messengers and New Physics

Studies of the universe began with optical telescopes, using our eyes to capture the signal from distant sources. As technology advanced, we used cameras to record this light, thus allowing for longer integrations and deeper insights into the cosmos. We soon began to explore the cosmos with light not visible to our eyes, from radio waves to X-rays to light with even higher energies. The scientific community has continued to add new messengers from the cosmos beyond the electromagnetic spectrum: High energy particles, neutrinos, and gravitational waves. Combining these multiple messengers is key to understanding the underlying physics of the most extreme events in the cosmos such as stellar explosions, collisions between black holes or neutron stars, and the dramatic forces in the regions surrounding supermassive black holes. Our understanding of the universe has advanced with each new way of observing the sky.

Bryce canyon skies. photo: Anil Seth

The faculty at Utah helped introduce some of these new messengers to the field of astrophysics. The Telescope Array, near Delta, Utah, is the most recent in a series of Utah experiments to study very high energy particles. The highest energy particle on record was detected from this sequence of experiments in Utah. The Utah faculty round out the full suite of messengers with significant contributions to the LIGO interferometer that is used to detect gravitational waves, the IceCube Neutrino Observatory at the South Pole, and the Veritas and HAWC (High-Altitude Water Cherenkov) observatories, and the future CTA and SWGO observatories used to detect the highest energy photons. The Utah faculty also leverages national facilities to use everything between radio and X-rays to explore the physics behind the most dramatic events in the universe.

This theme within the decadal survey also includes new physics, particularly the unknown physical natures of dark matter and dark energy. The possibility for discovering new fields, new particles, new laws for gravity, or new particle interactions motivated the construction of the Vera C. Rubin Observatory in Chile and the Dark Energy Spectroscopic Instrument in Arizona. Faculty in Utah use the data from these observatories to constrain models of fundamental physics and hunt for the signatures of new physics. Faculty in Utah are also making theoretical predictions for new signatures that dark matter or other new physics may introduce into the full suite of astronomical detectors that are used to track the multiple messengers from the cosmos.

Utah Faculty Researchers


John Belz - Studies the composition of the highest-energy cosmic rays, and investigated the use of novel instruments for their detection. He also uses computational techniques to model extreme spacetimes at the threshold of black hole formation, work complementary to the studies carried out by the Utah gravitational wave physics group.

Douglas Bergman - Uses observations of ultra high energy cosmic rays to test fundamental physics at the highest energies and to explore where extreme acceleration mechanisms exist in the local universe.

Benjamin Bromley - Explores the formation of planets using supercomputer simulations. This work identifies the conditions necessary for a star to host a planet like Earth.

Joel Brownstein - The head of data for the Sloan Digital Sky Survey (SDSS). He uses the distribution of luminous matter and dark matter to explore cosmic ecosystems.

Kyle Dawson - Co-spokesperson who sets priorities for cosmological studies within the 500-member, Dark Energy Spectroscopic Instrument (DESI) collaboration. He uses these spectroscopic data to search for new physics such as dark energy, new theories of gravity, and new fields that affect the evolution of the cosmos.

Paolo Gondolo - Studies theoretical models for new physics related to the nature of dark matter, and uses multi-messenger observational and experimental data to test them.

Charles Jui - Uses ultra high energy cosmic rays as a messenger to explore where extreme acceleration mechanisms exist in the local universe.

David Kieda - Leads multi -messenger astrophysics observations using high energy gamma rays as a messenger to explore particle acceleration around supernova remnants, neutron stars and black holes. Head of US development effort for ultra-high resolution interferometric observations of stars and binary systems.

Tanmoy Laskar - Uses light across the electromagnetic spectrum to investigate new physics in distant cosmic explosions.

Yao-Yuan Mao - Searches for galaxies in the nearby universe that are much smaller than the Milky Way and studies their roles in the cosmic ecosystems and their connection to dark matter.

John Matthews - Uses ultra high energy cosmic rays as a messenger to explore where extreme acceleration mechanisms exist in the local universe.

Carsten Rott - Studies neutrinos as a member of the IceCube collaboration, an observatory built into the pristine ice of the South Pole.

Pearl Sandick - Studies possible explanations for the dark matter in the Universe, how to confirm its nature experimentally, and how it affects our understanding of particle physics.

Anil Seth - Uses NASA’s recently launched James Webb Space Telescope, the Hubble Space Telescope, and other national facilities to study cosmic ecosystems and supermassive black holes.

Wayne Springer - Uses very high energy gamma rays as a messenger to explore particle acceleration around supermassive black holes.

Daniel Wik - Takes a broad view of cosmic ecosystems by exploring clusters of galaxies and their wells of hot gas.

Gail Zasowski - Uses positions, motions, ages, and chemical makeup of millions of stars in the Milky Way and nearby galaxies to better understand today’s worlds and suns.

Yue Zhao - Leads the Utah gravitational wave physics group in the Laser Interferometer Gravitational-Wave Observatory (LIGO).

Zheng Zheng - Studies the connection between galaxies, the dark matter halos in which they live, and the gas that flows in and out of these dark matter halos.

 

 

 

Distinguished Service

Distinguished Service


Pearl Sandick

Pearl Sandick receives Distinguished Service Award.

Pearl Sandick, Associate Professor of Physics and Astronomy and Associate Dean of Faculty Affairs for the College of Science, has received the Linda K. Amos Award for Distinguished Service to Women. The award recognizes Sandick’s contributions to improving the educational and working environment for women at the University of Utah. Amos was the founding chair of the Presidential Commission on the Status of Women, was a professor of nursing, and served for many years as Dean of the College of Nursing and as Associate Vice President for Health Sciences. Throughout her career, Amos was the champion for improving the status and experience of women on campus.

“This is a great honor. I’m privileged to work with amazing students and colleagues who understand the value of a supportive community,” said Sandick. “I am really proud of what we’ve accomplished so far, and I’m excited to start to see the impact of some more recent projects.”

Sandick is a theoretical particle physicist, studying some of the largest and smallest things in the universe, including dark matter, the mysterious stuff that gravitationally binds galaxies and clusters of galaxies together.

Upon her arrival as an assistant professor in 2011, Sandick founded the U’s first affinity group for women in physics and astronomy. For the last two decades, the national percentage of women physicists at the undergraduate level has hovered around 20%. The percentage at more advanced career stages has slowly risen to that level, thanks in part to supportive programming designed to increase retention. The goal of the affinity group within the department is to foster a sense of community and provide opportunities for informal mentoring and the exchange of information, ideas, and resources. The group has also been active in outreach and recruiting. As of fall 2021, the group is now known as PASSAGE, a more inclusive group focused on gender equity in physics and astronomy.

Within the department and in the College of Science, Sandick has improved a number of processes, including writing an effective practices document for faculty hires, based in large part on research related to equitable and inclusive recruitment practices and application review. As Associate Dean, she worked with the College of Science Equity, Diversity, and Inclusion Committee (which she currently chairs) to create college-wide faculty hiring guidelines, which were adopted in 2020. She was also instrumental in several other structural and programmatic initiatives to create a supportive environment in the department, such as the development of a faculty mentoring program and the establishment of “ombuds liaisons” to connect department members with institutional resources.

Through her national service related to diversity and inclusion, Sandick has gained a variety of expertise that she has brought back to the campus community. For example, she has given workshops in the department, the college, and across campus on communication and negotiation, implicit bias, conflict management, and mentorship.

Here are comments from women in the Department of Physics & Astronomy, who have participated with Dr. Sandick in activities sponsored by PASSAGE:

“Being part of PASSAGE has allowed us to connect with others who share similar experiences in the department. It has also helped us connect with people, both within the university community and at other institutions, who have served as role models and mentors.” –Tessa McNamee and Callie Clontz, undergraduates

"PASSAGE became a lifeline during the pandemic and continues to be so. It helps equip members with the tools that they need in various aspects of academia. Professor Sandick makes it her mission to guide us, especially in a time of crisis. I am personally thankful to her and to all of the group members.” –Dr. Ayşegül Tümer, Postdoctoral Research Associate

In addition to her research, Sandick is passionate about teaching, mentoring, and making science accessible and exciting for everyone. She has been recognized for her teaching and mentoring work, with a 2016 University of Utah Early Career Teaching Award and a 2020 University of Utah Distinguished Mentor Award. In 2020, she also was named a U Presidential Scholar. As discussed earlier, women are still widely underrepresented in physics, and Sandick is actively involved in organizations that support recruitment, retention, and advancement of women physicists. She has served on the American Physical Society (APS) Committee on the Status of Women in Physics and as the chair of the National Organizing Committee for the APS Conferences for Undergraduate Women in Physics. She is currently chair of the APS Four Corners Section, which serves approximately 1,800 members from the region.

- by Michele Swaner, first published at physics.utah.edu

>> BACK <<

 

IF/THEN Ambassador

IF/THEN Ambassador


Janis Louie

IF/THEN is designed to activate a culture shift among young girls to open their eyes to STEM careers.

The august statuary of Washington, D.C. will soon include a University of Utah chemistry professor. A 3D-printed statue of Janis Louie will stand with 119 other statues of women in science, technology, engineering and math (STEM) in and around the National Mall from March 5-27.

The exhibit places Louie among the largest collection of statues of women ever assembled, according to the Smithsonian Institution, and celebrates the participants in the IF/THEN Ambassador program that is “designed to activate a culture shift among young girls to open their eyes to STEM careers,” according to the initiative’s website.

“I hope visitors feel inspired, encouraged and empowered,” says Louie. “For me, the exhibit is meant to show that STEM isn’t for one type of person, STEM is for everyone!”

Inspiring a Generation

The IF/THEN Ambassador Program is sponsored by Lyda Hill Philanthropies as part of the IF/THEN initiative. The initiative aims to “advance women in STEM by empowering current innovators and inspiring the next generation of pioneers.”

The Ambassadors program is a part of that initiative, and assembled high-profile women in STEM to act as role models for middle school-age girls. Ambassadors received media and communications training and then engaged in outreach work nationally.

Dr. Louie and family.

After selection in 2019, Louie traveled to a three-day conference with the other Ambassadors. “It was amazing!” she says. “It is the only conference I have ever been to that was 100% female scientists!”

It was a diverse group. “The featured women hail from a variety of fields,” she says, “from protecting wildlife, discovering galaxies and building YouTube’s platform to trying to cure cancer.”

Later, Louie appeared on an episode CBS’ Mission Unstoppable to draw connections between chemistry and the world around us. She also pitched in when another Ambassador’s summer STEM camp needed to go online with the onset of the COVID-19 pandemic.

“She asked a variety of the Ambassadors to present to the girls over Zoom, so that the STEM camp could still be impactful,” Louie says. “I was delighted to be one of the presenters!”

Meeting her statue

The process of creating the 120 statues was very different from the traditional sculpture techniques that created the hundreds of other statues in Washington, D.C. At the initial conference, Louie and the other Ambassadors each took a turn being digitally scanned in a booth with 89 cameras and 25 projectors so that the statues could later be 3D printed. (Learn more about the process of creating the exhibit here.)

When completed, the orange statues appeared in Dallas and New York City before the full exhibit was first unveiled in Dallas, Texas in May 2021. Washington, D.C. is the exhibition’s second stop.

Louie and her family traveled to Dallas to see her statue.

“It was surreal, in the best way!” she says, of meeting her doppelgänger.  “My children were able to see not only myself but a field of orange statues of women pioneers—and I was thanked by someone visiting the exhibit for making a difference.”

Meet the other Ambassadors featured in the exhibit here.

 

by Paul Gabrielsen, first published in @theU

 

Photos courtesy of the IF/THEN® Collection

 

Student Spotlights


Jessica Venegas

Ty Mellor

Sage Blackburn

Tiffany Do: Undergrad Research Scholar

Phi Beta Kappa

Fulbright Scholar

Research Scholar

Outstanding Post-Doc

NSF Fellowship

NSF Fellowship

>> HOME <<


The Frontier of Physics

The Frontier of Physics


The Standard Model of particle physics is the theory that explains how the most elementary particles interact with each other and combine to form composite objects, like protons and neutrons. Developed over the course of many decades, what we know as the Standard Model today was formulated nearly half a century ago and remains a focus of study for particle physicists. But by itself, the Standard Model fails to provide an explanation for many important phenomena, such as the existence of the dark matter in the universe.

The Standard Model

Today, physicists and researchers are on the frontier in the search for physics beyond the Standard Model, using connections between theoretical particle physics, cosmology, and astrophysics to help us understand the universe.

Pearl Sandick, Associate Professor of Physics and Astronomy and Associate Dean of Faculty Affairs for the College of Science, is on that frontier. As a theoretical particle physicist, she studies some of the largest and smallest things in the universe, including dark matter, which is the mysterious stuff that gravitationally binds galaxies and clusters of galaxies together.

While regular matter makes up about one-sixth of the total matter in the universe, dark matter makes up five-sixths. There are compelling arguments that dark matter might actually be a new type of elementary particle. Electrons are an example of an elementary particle—they are the most fundamental building blocks of their type and are not composed of other particles. Other examples of elementary particles include quarks, neutrinos, and photons.

In August 2019, Sandick and her colleagues hosted a workshop entitled “The Search for New Physics—Leaving No Stone Unturned,” which brought together dozens of particle physicists, astrophysicists, and cosmologists from around the world to discuss recent advances and big ideas. “It was such a vibrant environment; I think it helped us all broaden our perspectives and learn new things. Though there’s a lot going on in the meantime, we’re already excited about the prospect of hosting a second “No Stone Unturned” workshop in the new Science Building.”

Recently, Sandick has turned her attention to another cosmological phenomenon—black holes—tackling the question of how their existence affects our understanding of dark matter and other physics beyond the Standard Model.

“Some of this new research makes use of the cosmic microwave background (CMB), which is leftover radiation from the Big Bang that we can observe today,” said Sandick.

“CMB measurements can help us understand the structure and composition of the universe, including how much is made of dark matter. The CMB also can provide hints about what other particles or objects existed in the early universe.”

Before the CMB was created, the universe was very hot and very dense. In this environment, the densest places would have collapsed to become black holes. The black holes that formed in this way are called primordial black holes (PBHs), to differentiate them from black holes that form much later when stars reach the end of their lives. Heavy enough PBHs would still be around today and could make up some or all of the dark matter, providing an alternative to the idea that dark matter is a new particle. Lighter PBHs probably are not an explanation for dark matter, but they would have had an important interplay with dark matter and other new particles.

Sandick, along with a U of U postdoctoral associate, Barmak Shams Es Haghi, have been looking into the many impacts of a population of light PBHs in the early universe. Recently, they’ve completed the first precision study of some spinning PBHs in the early universe, finding that current CMB measurements from the Planck satellite (an observatory operated by the European Space Agency) and future measurements with the CMB Stage 4 experiment at the South Pole and in the Chilean desert are sensitive to many important PBH scenarios. The Planck data already point to some more and less likely possibilities, while CMB Stage 4 will be an important step forward in understanding the life and death of small black holes.

In addition to her research, Sandick is passionate about teaching, mentoring, and making science accessible and interesting. She has been recognized for her teaching and mentoring work, with a 2016 University of Utah Early Career Teaching Award and a 2020 University of Utah Distinguished Mentor Award. In 2020, she also was named a U Presidential Scholar. Women are still widely underrepresented in physics, and Sandick is actively involved in organizations that support recruitment, retention, and advancement of women physicists. She has served on the American Physical Society (APS) Committee on the Status of Women in Physics and as the Chair of the National Organizing Committee for the APS Conferences for Undergraduate Women in Physics. She is currently chair of the APS Four Corners Section, which serves approximately 1,800 members from the region. In 2011, she founded a group to support women in the Department of Physics and Astronomy and continues to serve as their faculty advisor.

She earned a Ph.D. from the University of Minnesota in 2008 and was a postdoctoral fellow at Nobel Laureate Steven Weinberg’s group (Weinberg Theory Group) at the University of Texas at Austin before moving to the University of Utah in 2011.

- by Michele Swaner, first published at physics.utah.edu

>> BACK <<

 

Physics Innovation

Yue Zhao receives Physics Innovation Award

Yue Zhao, assistant professor in the Department of Physics & Astronomy, has received a Gordon and Betty Moore Foundation Fundamental Physics Innovation Award, in association with the American Physical Society. This award supports extended visits between researchers to learn, develop, and share techniques or scientific approaches.

The goal of the award is to stimulate ideas on innovative ways in which emerging technologies can be used to address pressing problems in the physics of fundamental particles and interactions. The rapid developments in quantum-sensing technologies keep pushing the limits of the precision frontier, and some of them provide ideal platforms to search for dark matter candidates.

“The award will allow me to collaborate with experimentalists,” said Zhao, “and investigate the possibilities of applying these fascinating technologies to search for dark matter candidates, especially in the ultralight mass regime, such as axions and dark photons. This award provides travel support for me to visit these experimental labs in order to exchange ideas and gain a more comprehensive understanding about the experimental setup.” He plans to visit a lab at Nanjing University in China.

Particle physics is a discipline within the field that studies the nature of the smallest detectable particles that make up matter and radiation. The Standard Model is the theory that explains what these particles are and how they interact with each other. It was developed by scientists during the 1970s. While the Standard Model explains a lot about the laws of physics, it isn’t able to explain all phenomena, including dark matter.

Zhao studied advanced physics at Peking University and moved to Rutgers University to pursue a Ph.D. He joined the University of Utah in July 2018.

 

By Michele Swaner, first published @ physics.utah.edu

William D. Ohlsen

In Memoriam: Emeritus Professor William D. Ohlsen

Emeritus Professor William David Ohlsen died peacefully at his home in Salt Lake City on August 9, 2021, following a diagnosis of pancreatic cancer. He joined the University of Utah faculty in 1961, where he spent 36 years teaching physics and mentoring graduate students. We will miss him.

His research at the U involved the study of defects and dopants in crystalline and amorphous semiconducting solids. Amorphous silicon, crystalline III-V semiconductors, and chalcogenides were the subjects of other investigations.

Bill was born June 8, 1932 in Evanston, Illinois, to Wilma and Edward Ohlsen and grew up in Ames, Iowa.

Bill graduated from Iowa State University in 1954 with a B.S. in Physics and received a Ph.D. in Physics from Cornell University in 1961.

Bill was introduced to the love of his life, Ruth Bradford, in 1955 by Ruth's sister Nancy. Following months of exchanging letters and phone calls, they met for the first time in person on January 1, 1956. They spent a total of four days in each other's presence before marrying on June 16, 1956 in a double wedding ceremony with Nancy and John Clark, Bill's boyhood neighbor and lifelong friend.

Bill was an enthusiastic traveler, visiting twenty-two countries over the course of his life, including two sabbatical trips to Germany. An avid lover of the outdoors, Bill enjoyed skiing, hiking, biking, fishing, hunting, camping, backpacking, and running. At home, he enjoyed classical music, a good book, a good basketball game, and a good beer. He also loved puzzles and games, including chess, sudoku, and the Wall Street Journal Saturday crossword.

He is survived by his wife, Ruth Bradford Ohlsen; three daughters, Diane Ohlsen Guest, Patricia Ohlsen Horton, and Lynn Ohlsen Craig; nine grandchildren; seven great-grandchildren; and his sister, Anita Wald Tuttle.

Bill cared deeply about the environment and lived his principles. For example, he walked or rode his bike to work every day of his life, composted, recycled, participated in highway trash collections, and chose to avoid air travel to the extent possible. Bill will be remembered by all who knew him for his humility, generosity, wisdom, and kindness.

In lieu of flowers, donations can be made to Save Our Canyons. Visit http://saveourcanyons.org for more information.

 

Adapted from The Salt Lake Tribune by Michele Swaner, first published @ physics.utah.edu

Camille-Dreyfus Award

Luisa Whittaker-Brooks recognized with the Camillle-Dreyfus Teacher Scholar Award


Luisa Whittaker-Brooks, an assistant professor in the department of chemistry, is among 16 early career chemists named as a 2021 Camille Dreyfus Teacher-Scholar. Selected by the Camille and Henry Dreyfus Foundation, Camille Dreyfus Teacher-Scholars receive an unrestricted $100,000 research grant.

“I was actually having a meeting with my undergraduate students when I received a text message from my Ph.D. advisor with the news,” Whittaker-Brooks says. “The only thing I could think about after the text was how instrumental my undergrads were in getting this award.”

Camille Dreyfus Teacher-Scholars, according to the Dreyfus Foundation, “are within the first five years of their academic careers, have each created an outstanding independent body of scholarship, and are deeply committed to education.”

Whittaker-Brooks’ award cites her research in “designer hybrid organic-inorganic interfaces for coherent spin and energy transfer.” Her research group, their website says, is “driven by two of the greatest challenges of our time –sustainable energy and low cost electronics for daily use applications. We plan to embark in these new endeavors by synthesizing and elucidating the functional properties of well-defined and high-quality materials for applications in photovoltaics, thermoelectrics, batteries, spintronics, and electronics.”

Story originally published in @theU

NAS Membership

mary beckerle elected to the national academy of science


The National Academy of Sciences has elected Mary Beckerle, PhD, Huntsman Cancer Institute (HCI) CEO and distinguished professor of biology and oncological sciences at the University of Utah (U of U), as a member. Beckerle is among 120 newly elected members announced in a press release during the annual meeting of the National Academy of Sciences.

Election as a member in this organization is widely accepted as a mark of excellence in scientific achievement and is considered one of the highest honors a scientist can receive. Of its more than 2,400 current members, approximately 190 have received a Nobel Prize, according to the National Academy of Sciences.

Beckerle shared she was “very surprised” to learn of her election to the prestigious group. She received a phone call this morning from a member of the National Academy of Sciences informing her of her election. Within minutes, she then received a flood of phone calls, emails, and text messages from colleagues congratulating her. “It was the most connected I have felt to my scientific community since the pandemic began, and it was lovely to be in touch with so many colleagues from around the world,” added Beckerle.

Beckerle’s research discovered a new pathway that is crucial in enabling cells to respond to mechanical signals in their environment. Such signals are now known to regulate cell growth and movement, two behaviors that yield critical insights into cancer biology. The Beckerle Lab is currently focused on understanding the molecular mechanisms underlying this pathway and its impact on tumor progression, particularly in Ewing sarcoma, a rare but deadly bone cancer that typically affects children and young adults.

“Dr. Beckerle’s election to the National Academy of Sciences affirms what her colleagues see every day. She is a driving force as an individual scientist, yet Dr. Beckerle’s hallmark is collaborative leadership that allows teams of scientists to achieve more together than they ever could alone,” said Michael L. Good, MD, University of Utah interim president and CEO of University of Utah Health. In addition to leading HCI, Beckerle holds the Jon M. Huntsman Presidential Endowed Chair and also serves as associate vice president for cancer affairs at the U of U. Beckerle is only the 27th faculty member in the history of the U of U to be elected to the National Academy of Sciences.

Beckerle joined the U of U faculty in 1986, when she set up her first independent laboratory as a young scientist. Prior to coming to Utah, she earned her PhD in molecular, cellular, and developmental biology from the University of Colorado at Boulder, where she received a Danforth Fellowship. She completed postdoctoral research at the University of North Carolina at Chapel Hill and received a Guggenheim Fellowship for her studies at the Curie Institute in Paris.

She has received numerous accolades for her research, including the National Cancer Institute Knudsen Prize in recognition of her contributions to research on the genetic basis of cancer. She is also an elected fellow of other distinguished scientific organizations, including the American Philosophical Society, the American Academy of Arts and Sciences, and the Academy of the American Association for Cancer Research.  She served as President of the American Society for Cell Biology and is a member of the Medical Advisory Board of the Howard Hughes Medical Institute.

As CEO of HCI, she led the organization to achieve its first-ever designation as a National Cancer Institute-Designated Comprehensive Cancer Center, the highest possible status of a cancer research institute. She also has led HCI’s clinical programs to recognition as among the nation’s Best Cancer Hospitals, according to U.S. News and World Report. Beckerle was appointed as a member of then-Vice President Biden’s Cancer Moonshot Blue Ribbon Panel, where she co-chaired the working group on Precision Prevention and Early Detection.

“It is an incredible honor to be named alongside exceptionally talented colleagues who are part of the National Academy of Sciences,” said Beckerle. “Scientific research is fascinating and motivating work, yet as a scientist, I often feel impatient. Each day, I work with the understanding that people are counting on the scientific community to make discoveries that will improve health, develop better treatments for diseases, enhance quality of life, and, wherever possible, prevent development of diseases like cancer. It is deeply humbling to see my contributions, and those of the many people who have worked in my lab over several decades, recognized in this way. My sincere hope is that the work of my research team will contribute to Huntsman Cancer Institute’s vision of delivering a cancer-free frontier.”

Beckerle adds that the National Academy of Sciences has a major impact in shaping science policy. She looks forward to the opportunity to contribute to the national dialogue on how to advance scientific innovation and impact via her role as a member of this organization.

first published by Ashlee Harrison of Huntsman Cancer Institute in @theU

AAAS Membership

Valeria Molinero elected to the american academy of arts and sciences


Valeria Molinero, Distinguished Professor and Jack and Peg Simons Endowed Professor of Theoretical Chemistry, is among the 252 newly elected members of the American Academy of Arts and Sciences. The Academy honors excellence and convenes leaders from every field of human endeavor to examine new ideas, address issues of importance to the nation and the world and work together.

Among those joining Molinero in the Class of 2021 are neuroscientist and CNN medical correspondent Sanjay K. Gupta, Pulitzer Prize-winning investigative journalist Nikole Hannah-Jones of the New York Times and media entrepreneur Oprah Winfrey.

Molinero joins 16 other members affiliated with the U, including Nobel laureate Mario Capecchi, Huntsman Cancer Institute CEO Mary Beckerle and Distinguished Professor of Anthropology Kristen Hawkes. The U’s first member was chemist and National Medal of Science recipient Henry Eyring, elected in 1958. Molinero currently directs a center for theoretical chemistry named for Eyring.

“I am surprised and elated by this recognition,” Molinero said. “My most pervasive feeling is gratitude:  to my trainees and collaborators for sharing with me the joy of science and discovery, to my colleagues and scientific community for their encouragement and recognition, and to the University of Utah for the support that has provided me throughout all my independent career.”

Molinero and her lab use computational simulations to understand the molecule-by-molecule process of how ice forms and how polymers, proteins and other compounds can either aid or inhibit the formation of ice. In 2019, the U awarded her its Distinguished Scholarly and Creative Research Award. In 2020, she and her colleagues received the Cozzarelli Prize from the journal Proceedings of the National Academy of Sciences for finding that the smallest nanodroplet of water that can form ice is around 90 molecules. Their research has application ranging from climate modeling to achieving the perfect texture of ice cream.

“This is not surprising, as Vale is just an outstanding scientist and colleague,” said Matt Sigman, chemistry department chair.

“Vale Molinero is among the most influential theoretical and computational chemists of her generation,” said Peter Trapa, dean of the College of Science. “ Today’s announcement is a fitting recognition of her exceptional career.”

The College of Science now features eight Academy members, including five from the Department of Chemistry.

The Academy was founded in 1780 by John Adams, John Hancock and others who believed the new republic should honor exceptionally accomplished individuals and engage them in advancing the public good. Studies compiled by the Academy have helped set the direction of research and analysis in science and technology policy, global security and international affairs, social policy, education and the humanities.

Current Academy members represent today’s innovative thinkers in every field and profession, including more than 250 Nobel and Pulitzer Prize winners.

first published by Paul Gabrielson in @theU