A.A.U. Membership

UTAH JOINS THE A.A.U.


 

"It is difficult to overstate the importance of AAU Membership. This elevates the U to an exceptional category of peer institutions."
- Dean Peter Trapa

 

The University of Utah is one of the newest members of the prestigious Association of American Universities, which for more than 100 years has recognized the most outstanding academic institutions in the nation.

Mary Sue Coleman, president of the Association of American Universities (AAU), announced Wednesday that University of Utah President Ruth V. Watkins has accepted an invitation to join the association, along with the University of California, Santa Cruz and Dartmouth College. The three new members bring the number of AAU institutions to 65.

AAU invitations are infrequent; this year’s invitations are the first since 2012.

 

 

“AAU’s membership is limited to institutions at the forefront of scientific inquiry and educational excellence,” said Coleman. “These world-class institutions are a welcome addition, and we look forward to working with them as we continue to shape policy for higher education, science, and innovation.” - Mary Sue Coleman

 

About the AAU
The AAU formed in 1900 to promote and raise standards for university research and education. Today its mission is to “provide a forum for the development and implementation of institutional and national policies promoting strong programs of academic research and scholarship and undergraduate, graduate and professional education.”

A current list of member institutions can be found here. The membership criteria are based on a university’s research funding (the U reached a milestone of $547 million in research funding in FY2019); the proportion of faculty elected to the National Academies of Science, Engineering and Medicine; the impact of research and scholarship; and student outcomes. The U has 21 National Academies members, with some elected to more than one academy.

An AAU committee periodically reviews universities and recommends them to the full association for membership, where a three-fourths vote is required to confirm the invitation.

Leaders of AAU member universities meet to discuss common challenges and future directions in higher education. The U’s leaders will now join those meetings, which include the leaders of all the top 10 and 56 of the top 100 universities in the United States.

 

“We already knew that the U was one of the jewels of Utah and of the Intermountain West. This invitation shows that we are one of the jewels of the entire nation.” - H. David Burton

 

U on the rise
In FY2019 the U celebrated a historic high of $547 million in sponsored project funding, covering a wide range of research activities. These prestigious awards from organizations such as the U.S. Department of Energy, National Institutes of Health and National Science Foundation are supporting work in geothermal energy, cross-cutting, interdisciplinary approaches to research that challenge existing paradigms and effects of cannabinoids on pain management.

They also are funding educational research programs with significant community engagement, such as the U’s STEM Ambassador Program and the Genetic Science Learning Center’s participation in the All of Us Research Program.

“AAU is a confirmation of the quality and caliber of our faculty and the innovative work they are doing to advance knowledge and address grand societal challenges. Our students and our community will be the ultimate beneficiaries of these endeavors. " - President Ruth Watkins

 

On Nov. 4, 2019, the U announced a $150 million gift, the largest single-project donation in its history, to establish the Huntsman Mental Health Institute. These gifts and awards are in addition to the ongoing support of the U from the Utah State Legislature.

This fall the university welcomed its most academically prepared class of first-year students. The freshman cohort includes 4,249 students boasting an impressive 3.66 average high school GPA and an average ACT composite score of 25.8. The incoming class also brings more diversity to campus with both a 54% increase in international students and more bilingual students than the previous year’s freshman class. Among our freshmen who are U.S. citizens, 30% are students of color.

The U’s focus on student success has led to an increased six-year graduation rate, which now sits at 70%—well above the national average for four-year schools. The rate has jumped 19 percentage points over the past decade, making it one of only two public higher education research institutions to achieve this success.

College Rankings

College Rankings


U.S. News & World Report has released their 2022-2022 National University Rankings. The University of Utah is now ranked No. 1 in Utah and No. 42 nationally among public universities.

The College of Science fared even better. National rankings for public universities put Biology at No. 13, Chemistry at No. 20, Mathematics at No. 22, and Physics & Astronomy at No. 47.

There are many factors used to determine a school’s final ranking in the U.S. News & World Report but one factor that is not considered is cost. When cost is factored, there are few universities that challenge the University of Utah.

>> HOME <<

Explore the SRI

At many universities undergraduates have the opportunity to engage in scientific research only in their junior or senior years. Yet successful scientists all have the same core attributes—curiosity, communication skills and a willingness to learn interdisciplinary techniques— traits that many students already possess as first year students. In 2020, College of Science will give hundreds of undergraduates the opportunity to contribute to real research projects the year that they step onto campus.

The Science Research Initiative (SRI) is a team-based program that will connect students to discovery-based research early in their education to gain valuable scientific skills. The vision is to provide an opportunity to do research for any incoming student in the College of Science. Additionally, the cohort model makes research opportunities more equitable for students from all backgrounds.

The initiative is self-sustaining by design with experienced students tasked with training incoming first year students—a model that could allow hundreds of students to contribute to a principal investigator’s research for decades. The initiative has support from the university, the state, and industry partners who see the benefit of producing students who are ready to thrive in Utah’s STEM workforce.

“Research opportunities for undergraduates are transformative experiences. The problem that the college has historically faced is that there are many more science majors than there are openings in faculty research laboratories. The SRI solves that problem by scaling up the model of one-on-one faculty mentorship in the framework of vertically integrated research streams,” said Peter Trapa, Dean of the College of Science.

The SRI aims to give 500 undergraduates per year the opportunity to contribute to scientific discoveries, just like Bridget Phillips, a Crocker Science House Scholar and sophomore biology major with a math minor, had this summer.

Phillips was working in biologist Mike Shapiro’s Pigeon Genetics Lab writing code for a project looking for genes that determine the birds’ eye color. She was mining mountains of data searching for a quantitative trait locus (QTL) peak.

She was comparing the genotypes of two groups of pigeons with different eye colors. Because pigeons breeds are the same species, their genetics should look identical except for the gene locus underpinning eye color.

“I got a QTL peak that showed where the gene might be,” she said, smiling. “It was nice. I impressed the postdocs.”

Phillips has been working in Shapiro’s lab since her freshman year. She is an alum of ACCESS, a program where rising freshman in STEM disciplines join a cohort of like-minded undergrads ahead of their first semester in college. ACCESS facilitated her placement in the lab where she found her passion—coding and genetics, two things she never knew existed in a one career.

“Starting in a lab as a freshman is so useful, but the fear is that you don’t know what you’re doing. But you learn the skills really quickly,” Phillips said. “The earlier you can start, the better. If you find out your freshman year that you don’t like research, that’s good to know. If you like research, like I do, then you know what to aim for.”

The college based the SRI on a similar program at the University of Texas-Austin that impressed Henry White, Distinguished Professor of Chemistry and former dean of the college who championed the initiative during his tenure. Since starting the program 20 years ago, UT-Austin has increased enrollment and improved student success, particularly among those from underrepresented groups in STEM fields.

“Students from families who’ve been going to college for generations come to campus recognizing that research opportunities are just as important as the classes themselves,” said White. “This program is meant to promote students who haven’t had the opportunity to be involved in research. We hope to introduce underrepresented, first-generation students to research opportunities, enriching their experience at the U.”

During the first semester, a cohort of students will take a research course to learn basic lab techniques that will replace a traditional prerequisite class. The second semester, the students begin work in a lab led by a principal investigator. They continue the research for their third and fourth semesters, and train an incoming cohort to create a “steady-state” model. During their third year, the students can do an internship or work on an individual project that resembles a more traditional undergraduate lab experience. The college aims to have different streams of research in data science, molecular biology and many disciplines across the College of Science.

In January 2020, a small pilot cohort began the SRI journey. White, Shelley Minteer, professor of chemistry, Markus Babst, professor of biology, and Braxton Osting, professor of mathematics, have committed to developing initial projects. The goal is to eventually have 500 freshmen, sophomores and transfer students participate every year.

SRI brings benefits beyond campus. Others outside the university see benefits beyond student success. Funding has come from many sources, including corporate, foundation and individual gifts and workforce development funds from the Utah State Legislature. ARUP Laboratories, a national pathology lab, research facility and a nonprofit enterprise of the University of Utah, and BioFire, a medical diagnostics company, are sponsoring SRI because they view the partnership as mutually beneficial.

“We are constantly looking for well-qualified people to work in labs. It’s a career that’s understaffed—graduates have no problem finding a job, but there’s not a good awareness of this as a possible career path,” said Sherrie Perkins, CEO of ARUP Laboratories and professor of pathology at the U School of Medicine. “We’re so pleased to be a part of this exciting new program and to continue the pipeline of excellent students coming out of the university that we employ.”

Research opportunities indeed open many doors, agreed Rachel Cantrell, a senior chemistry major and Goldwater Scholarship recipient. Also an ACCESS alum, Cantrell has worked in Ryan Looper’s organic synthesis lab since her freshman year. At the time, she thought she wanted to be a pharmacist. Instead, she fell in love with research.

She is developing a scaffold for new antibiotic candidates, a crucial field of inquiry as bacteria are constantly building resistance to current antibiotics. Cantrell’s molecule is modeled after a natural product that kills both bacteria and human cells. Her project focuses on modifying the molecule so that it will only kill the bacteria and leave human cells alone. She plans to pursue a PhD after graduating this year. Beyond the research, the community and networking aspects of ACCESS made a big impact on her life.

“I met a lot of great people there that I’m still friends with. I got to meet faculty and was selected for a scholarship to study in Germany—the community aspect was huge,” she said. To undergrads thinking about whether they want to work in a lab, Cantrell has this advice, “You have to give it a chance. I worked as a pharmacy technician for a while, but I loved being in the lab more. Check out what you like. It can open some huge doors.” The new SRI aims to do just that.

 

 

>> MORE INFO <<

 

Crimson Legacy

Crimson Legacy Society


A planned gift is the easiest way to make a major contribution to help the university advance scientific education and research. Your gift will produce exceptional opportunities for students and faculty.

The Crimson Legacy Society is designed to recognize those who have made a deep commitment to the future of the college. Members will be recognized on the Crimson Legacy donor wall and in the college’s annual Notebook publication. You will also receive special recognition of your support and be inducted into the University’s Park Society.

How do I become a member?
Designate a gift or pledge of $50,000, or more, in your will or estate to either the University of Utah College of Science, the School of Biological Sciences, or one of the departments of Chemistry, Mathematics, or Physics & Astronomy.

What if I already have the college or one of the departments in my will or estate plan?
First of all, thank you! Second, please contact us so we can record the details of the gift.

Please contact Jeff Martin at martin@science.utah.edu or 801-581-4852 for more information.

 

 - First Published in Discover Magazine, Fall 2019

Alumni Panel

Frontiers of Science - Distinguished Alumni Panel

Homecoming 2019 brought a number of alumni and friends back to the U this September. Before the tailgating and the football, the College of Science fielded an All-Star game of their own. The Frontiers of Science Distinguished Alumni Panel, held September 27, featured five science alumni currently working in cutting-edge science and technology.

Kirk M. Ririe, BS’05 Chemistry, Founder of Idaho Technology, (now Biofire), a medical device and diagnostics company. Ririe since developed new methods for rapid diagnosis of diseases and pathogens ranging from the common cold to anthrax.

Doon Gibbs, BS’77 Mathematics and Physics, currently the Director of Brookhaven National Laboratory in Upton, New York. Brookhaven is a multi-program U.S. Department of Energy laboratory with nearly 3,000 employees, more than 4,000 facility users each year, and an annual budget of about $600 million.

Dylan Zwick, PhD’14 Mathematics, Co-Founder and CPO of Pulse Labs, a startup company working to provide testing and analytics for developers working in the voice app industry. Pulse Labs was one of nine companies chosen for the “Alexa Accelerator,” Amazon’s first startup accelerator.

Reshma Shetty, BS’02 Engineering, Co-Founder of Ginkgo Bioworks, a Boston-based biotech company focused on using software and automation to bring rapid iteration, prototyping and scale to synthetic biology and organism design.

Ryan Watts, BS’00 Biology, CEO and Co-Founder of Denali Therapeutics, a biotechnology company focused on treatments and cures for neurodegenerative illnesses, such as Alzheimer’s and Parkinson’s disease.

Dean Peter Trapa acted as moderator for the evening. The mood was warm and friendly and surprisingly personal at times. The panel brought a huge range of diverse experiences to the discussion while consistently crediting their scientific education and research training as key to their success.

 

McKay Hyde

McKay Hyde (Honors B.A. Mathematics, B.A. Physics ’97) always enjoyed math and science, but it was taking a series of physics classes at the U, between his junior and senior year in high school, that changed his life. “I always enjoyed mathematics,” he said. “But physics showed me how mathematics could be used to solve real-world problems. That was tremendously exciting to me and still is.”

The Hyde Family

Today Hyde is managing director in Equities Engineering for the New York office of Goldman Sachs and is responsible for building systems to manage securities inventory and collateral, working closely with teams across Engineering, as well as the Finance, Operations and Securities divisions. “I like being part of a cross-functional team, building relationships and working together to find solutions that impact the organization and the clients we serve,” he said. “The combination of using mathematics and computer science applied to practical problems is very rewarding.”

He joined Goldman Sachs in 2006 and was named managing director in 2010. At Goldman Sachs, Hyde has had a range of responsibilities. He was head of the global Market Risk Technology team within Finance and Risk Engineering. Before that, Hyde led the Trading Strats team for Interest Rate Products in New York as well as the Core Quant Strats team, which developed models, algorithmic trading methods, and pricing infrastructure used by a number of trading desks. (“Strat” is a term that originated with Goldman Sachs to describe individuals that use tools from mathematics and computer science to build financial models In his Core Quant Strat role, Hyde led the build out of the Strat teams in Bengaluru (formerly Bangalore), India, known as “The Silicon Valley of India.”

McKay Hyde, BS'97

Roots in Utah and at the U

Hyde grew up in Salt Lake City and North Salt Lake, graduating from Woods Cross High School. He met his wife, Marie, in an “outstanding” honors class taught by Professor Emeritus Jack Newell (“Education and Identity”), who served as dean and principal architect of the U’s Liberal Education Program. In his first two years at the U Hyde was also active in the U’s music program, playing the trumpet in several university bands—Concert, Marching, Pep, and Jazz.

Hyde gives credit to the education he received at the U with helping prepare him for a career in the financial sector. “I received a tremendous education in physics and mathematics, including research experience working in the Cosmic Ray group and in probability theory. The U provides great value as an institution—a quality education at a reasonable cost,” he said.

He also has great memories of three professors who made a difference for him during his undergraduate years: Davar Khoshnevisan (professor and current chair of the Math Department), Hyde’s undergraduate research advisor in mathematics; Martha Bradley, former dean of the Honors College, and the late Professor Gale Dick, whose “physics lectures were a work of art,” said Hyde.

Using Agile Principles in Undergraduate Research

Hyde believes students should be encouraged to participate in research opportunities early in their undergraduate years, and he applauds the decision of the College of Science to focus on a new program called the Undergraduate Research Initiative. “Research is very different from coursework—it’s really a separate skill,” said Hyde. “Engaging and encouraging undergrads to work together in research opportunities provides a far richer educational experience that really pays off in preparing students for demanding careers.”

To that end, Hyde thinks the same concepts and principles that teams use in Agile software development can effectively be applied to something like the Undergraduate Research Initiative program. “Creating an Agile environment—whether in software development or research—is essentially the same,” said Hyde.

“It involves developing and supporting a culture that encourages a team of people to work toward a common goal. To that end, a large project or research problem can be broken down into smaller tasks. A scrum master or team leader evaluates the special skills and talents of each individual on the team, assigns them to specific tasks, and the team comes together frequently—typically during a daily stand up —over focused sprints—typically 2-3 weeks long—to complete those tasks yielding demonstrable progress at the end of each sprint. By repeating this process, the team improves while building confidence and trust through repeated accomplishment of its goals.”

Previous Academic Career

After earning degrees at the U in 1997 Hyde completed a Ph.D. in Applied and Computational Mathematics from the California Institute of Technology in 2003. Hyde worked as a postdoc in the School of Mathematics at the University of Minnesota and later joined Rice University as an assistant professor of computational and applied mathematics.

When Hyde first left academia to work at Goldman Sachs, he wondered if he would need to dress and act like a “stereotypical banker.” But he discovered it was a much easier transition. “I found smart people from technical fields applying their skills in the area of finance,” he said. “It made me realize the importance of being open to new opportunities—taking the skills and talents you have and using them in different fields or industries to build relationships with others and do meaningful work. That’s really what it’s all about.”

Hyde and his wife, Marie, enjoy living in New Jersey and are the parents of four children: a son studying music at Berklee College of Music; a daughter at Brigham Young University (currently serving a church mission in Peru); and a son and daughter in high school.

 - First Published in Discover Magazine, Fall 2019

Running with Scissors

Jamie Gagnon

One could argue that the age of genomes is divided between before CRISPR-Cas9 and after CRISPR-Cas9 (commonly referred to as just “CRISPR”). As a Harvard post-doc studying the genes involved in embryo development, James (Jamie) Gagnon remembers in 2012 that “pivotal moment” when these “really nice pair of scissors now easy to make” came on the scene.

“Before CRISPR,” says Gagnon whose interest early on had been more in engineering than biology, “we were all using the earlier generation of genome editing tools. Even so, we were able to determine that after making a mutation in a cell, when it divided, the change that had been made was inherited.”

The new “scissors” rapidly scaled up genome editing, allowing researchers to more easily alter DNA sequences and modify gene function. At the time CRISPR was inspiring others to move from the research model of smaller organisms like the c. elegans, a transparent worm made up of approximately 1,000 cells, to much larger ones like zebrafish. “The power of genetics,” Gagnon says, “is that zebrafish are now genetically accessible model of all vertebrates, including humans which share 70 percent of genes with fish.”

Zebrafish Research subjects

The impulse for Gagnon’s current work in vertebrate lineage and cell fate choice happened in Northern Maine, during a winter-mountaineering trip with his friend and fellow researcher Aaron McKenna whom he met while they were undergraduates at Worcester Polytechnic Institute in Massachusetts. There in the wilds, not far from Vermont where Gagnon grew up, ensued an extended conversation between the two which started to form a deeply complex but exciting research question.

“If we want to study how embryos grow, we have to do it in a living animal,” Gagnon remembers acknowledging to McKenna. “We knew we needed to do it [research] in live animals, complete and whole. I couldn’t shut up about it for several days,” he says, smiling. “Everyone was mutating genes.” It seems that at the time, and perhaps still to this day, ‘Let’s break a gene and see if you’re right about what it does’, was pro forma.

Zebrafish Scale

Instead, the developmental biologist (Gagnon) and the computational researcher (McKenna) decided to pick up where others had ended (and published), using technology in a creative way to mark cells with a genetic barcode that could later be used to trace the lineage of cells. The two were suddenly using data sets of CRISPR-scissor mutations to figure out how cells actually developed in zebrafish.

Still, the prevailing question for Gagnon the researcher is how does biology build an animal with millions of cells, all sharing information and all shape-shifting at the same time? And how does science then best go about studying that?

How does science turn chaos and cacophony into a symphony that is the marvel of a living organism?

A symphony orchestra isn’t a bad metaphor for the edge of science that Gagnon and his lab and colleagues find themselves standing at. (It helps, perhaps, that his wife Nikki, a trained studio artist, works at the Utah Symphony | Utah Opera.) “For thirty years,” says Gagnon, people have been deciphering the genome code … one of the worst computer codes ever written.” Just how bad is bad? Imagine three billion letters in one long line with no punctuation or formatting.

The Gagnon Lab

Perhaps it’s the engineer in him, but to get at that unwieldy code, he sees his task as finding additional tools to regulate CRISPR activity. These tools include doing base-editing and using self-targeting guide RNAs to facilitate cells themselves making a record of what they’re doing, what they’re listening to, as it were, as they play their own “score” of development. “We want to turn the single, really good sharp knife of CRISPR,” he explains “into a Swiss Army knife” to figure out the score of an organism’s symphonic work.

The micro-scissors of CRISPR that appear to have issued a sea change in genomic studies, he hopes, can be used to “force cells to make notes along the way” of their own developmental journey. “Every time the oboe plays,” he says, returning to the metaphor, “we want the player [the cell] to make a record and journal entry on it.”

Illustration by The Gagnon Lab

“In early embryos, there are multiple languages or instruments being used by a finite number of cells to communicate with other cells and to build an animal,” he continues. To which language/instrument does a cell “listen” to, and what choices (expression) does it make as a result?

In a sense Jamie Gagnon is no longer just trying to “decode” the genome, but to use CRISPR to make a version, readable to humans, of what cells are doing in real time and how. In short he’s looking for the creation of a cell-generated Ninth Symphony, a complex but coordinated record of how development occurred that a Beethoven would be proud to conduct.

It may be dangerous to run with scissors, something parents routinely warn their children of, but it turns out that a really good pair of them can do more than the obvious: they can inspire other technologies that promise to bend the arc of science towards even greater aspirations.

 

by David Pace

- First Published in OurDNA Magazine, Fall 2019

Electrochemistry

Henry S. White - A Positive Force in Electrochemistry

 

Henry S. White

From energy storage and generation to nanoscale 3D battery architectures to the transport of drugs through human skin, Henry White’s research is pioneering and highly imaginative within the field of electrochemistry. His work on nanoscale electrochemistry was groundbreaking and has developed into a significant field of research with various applications. Professor of Chemistry Shelley Minteer commented that White “greatly enjoys complex problems and is the electrochemist to go to when you have complex mass transport phenomena to understand.”

There’s an obvious reason why Henry White is considered one of the most influential and innovative electrochemists of his generation: he wears his passion and thoroughness for research on his sleeve. White maintained a strong research group funded by the National Institutes of Health, National Science Foundation, the Department of Energy, and the Department of Defense while serving for six years as Chair of the Department of Chemistry, then five years as Dean of the College of Science. His administrative service was a commitment back to an institution that allows him to do what he loves most: teaching and research.

Henry S. White

Now that he can once again devote all of his time to research and teaching, White is thrilled to be immersed in the frontiers of electrochemistry—asking relevant and innovative questions for our generation’s complex problems. As the Widtsoe Presidential Chair, he continues to train postdoctoral fellows, undergraduates, and graduate students in electrochemistry. The Widtsoe Chair specifically is valuable in providing funding for students to do high risk and truly innovative research that they wouldn’t otherwise be able to do.

“There are a lot of great questions” in the field of electrochemistry says White. Research isn’t just about solving a problem, it’s about learning how to ask interesting and original questions—something White finds a lot of joy in doing.

“Electrochemistry is a fascinating area of science, and a very diverse area, comprising many fundamental research topics in chemistry, materials science, physics, and engineering. It is also extremely relevant in providing potential solutions to many problems that society faces, especially in providing means for developing sustainable energy sources. I’ve been very fortunate during my career to have had the necessary funding and resources to work on very basic science questions in this area. And I’ve been even more fortunate to be able to work with incredibly talented students and postdocs at the University of Utah, many who have continued to work on electrochemical problems in both industry and academics.”

Dr. Hang Ren, a former postdoc of White’s who is now an Assistant Professor at Miami University in Ohio, focused on electrical measurements on individual DNA molecules trapped inside a protein nanopore while training with White. They were able to trap a single DNA molecule for hours, and watch its motional dynamics, and monitor chemical reactions via the change in electrical current through the protein.

In a second research project, they used platinum electrodes with radii as small as 5 nanometers to measure the nucleation rates of bubbles. They were able to generate a single nanobubble at the electrode surface, measure the nucleation rate, and infer the geometry of the smallest stable bubble that contained as few as 25 molecules. “This is a fundamentally important problem in the field of electrocatalysis, where bubbles are often formed and disrupt the catalytic processes on the electrode,” says Professor Ren.

Dr. Rui Gao, Dr Henry S. White, & Dr Koushik Barman.

White trains his students and postdocs on how to be a researcher, to ask innovative questions, and to be relentlessly rigorous in their approach. As he works with undergraduate and graduate students as well as postdocs, his methods are significantly influencing the next generation of scientists to continue a legacy of research excellence. After training with White for years, Professor Ren affirms that “Henry’s research approach is very  unique. In addition to solving scientific problems  elegantly, he is especially great at asking fundamental scientific questions. He is also highly innovative and very good at exploring new directions in electrochemistry. I was greatly influenced by my postdoc training with him.”

Henry White’s research is often cited by other researchers and is foundational in the fields of electrochemistry and analytical chemistry. “Henry has an uncommon disposition for innovation in undertaking both experimental and theoretical challenges in his research,” says Joel Harris, Distinguished Professor of Chemistry. White’s research has been recognized in major awards from the Society of Electroanalytical Chemistry, the Royal Society of Chemistry, the ACS Division of Analytical Chemistry, and the Electrochemical Society. He is also a Fellow of the American Academy of Arts and Sciences, the American Chemical Society, and the American Association for the Advancement of Science.

 - by Anne Marie Vivienne
  First Published in Discover Magazine, Fall 2019

 

Commutative Algebra

Can commutative algebra solve real-world problems?

Srikanth Iyengar

“When we first study advanced math, we learn to solve linear and quadratic equations, generally a single equation and in one variable,” said Srikanth Iyengar, Professor of Mathematics at the U. “But most real-world problems aren’t quite so easy—they often involve multiple equations in multiple variables.”

Finding explicit solutions to such equations is generally not feasible nor useful—it’s much more helpful to look for overall structure in the collection of all possible solutions. These solution sets are called algebraic varieties. The word algebraic indicates their origin is from polynomial equations, as opposed to equations involving things like trigonometric and exponential functions. Over the centuries, mathematicians have developed various tools to study these objects. One of them is to study functions on the space of solutions, and algebra is a good way to begin. These functions form a mathematical structure called a commutative ring. Commutative algebra is the study of commutative rings and modules, or algebraic structures over such rings.

Iyengar’s research focuses on understanding these structures, which have links to different areas of mathematics, particularly topology and representation theory.

Iyengar joined the Mathematics Department in 2014. He grew up in Hyderabad, India, and received a master’s degree and Ph.D. from Purdue University. Before joining the U, he taught at the University of Nebraska-Lincoln.

The foundation of commutative algebra lies in the work of 20th century German mathematician David Hilbert, whose work on invariant theory was motivated by questions in physics.

Srikanth Iyengar, Professor of Mathematics at the University of Utah

As a subject on its own, commutative algebra began under the name “ideal theory” with the work of mathematician Richard Dedekind, a giant of the late 19th and early 20th centuries. In turn, Dedekind’s work relied on the earlier work of Ernst Kummer and Leopold Kronecker. The mathematician responsible for the modern study of commutative algebra was Wolfgang Krull, who introduced concepts that are now central to the study of the subject, as well as Oscar Zariski, who made commutative algebra a foundation for the study of algebraic varieties.

“One of the things I enjoy about my research is how commutative algebra has so many connections to other things,” said Iyengar. “It makes for rich and lively research. Commutative algebra is continually reinvigorated by problems and perspectives from other fields.” Funding for Iyengar’s research is from the National Science Foundation. The Humboldt Foundation and the Simons Foundation have also provided support.

Commutative rings arise in diverse contexts in mathematics, physics, and computer science, among other fields. Within mathematics, besides functions on algebraic varieties, examples of commutative rings include rings of algebraic integers—the stuff of number theory. Commutative rings also arise, in myriad ways, in the study of symmetries of objects—algebraic topology, graph theory, and combinatorics, among others. One of the areas of physics where commutative algebra is useful is with string theory.

In recent years, ideas and  techniques from commutative algebra have begun to play an increasingly prominent role in coding theory, in reconstructions, and biology with neural networks.  While not everything Iyengar does day-to-day (or perhaps even in the span of a few years) has a direct impact in the field, mathematicians have a way of impacting other areas far from their original source, often decades later. There are many striking examples of this phenomenon. The “unreasonable effectiveness of mathematics” is well known. The phrase is part of a title of an article published in 1960 by Eugene Wigner, a Hungarian-American mathematician and theoretical physicist.

“I work by thinking about a piece of mathematics—perhaps it’s a research paper or a problem I run into somewhere in a textbook or a talk,” said Iyengar. “This sometimes leads to interesting research projects; at other times, it ends in a dead end. My perspective on research is that it’s more like a garden (or many interconnected gardens) waiting to be explored, rather than peaks to be climbed. Sure, there are landmarks but there’s rarely a point when I can say, Well, this is it—there’s nothing more to be achieved.’’

 

 - by Michele Swaner
  First Published in Discover Magazine, Fall 2019

 

Engaging STEM Students

ENGAGING STEM STUDENTS


How can we meaningfully engage students in STEM courses? How can we make Science, Technology, Engineering and Mathematics fields (STEM) more inclusive and accessible?

Claudia De Grandi

The retention rate in STEM fields is low—many students who initially plan to pursue a degree in STEM drop out because they don’t identify with the environment they’re exposed to and they don’t enjoy their STEM courses. How can we keep students excited and interested in staying in STEM?

Claudia De Grandi, assistant professor (lecturer) of educational practice in the Physics and Astronomy Department, spends most of her time thinking about how to make her courses more inclusive and how to encourage every student, independently of their background, abilities and identities, to participate and engage in STEM fields successfully.

“I love teaching because of its challenges,” said De Grandi. “Something that worked well in one place may not work in another setting. It’s the role of the teacher to listen to the students and adapt to be in tune with them. My goals are to be equitable and inclusive, although I don’t always achieve it.

Unfortunately, we’re all biased, and it’s our responsibility to keep trying to understand how it feels to be someone else.” De Grandi tries her best to consider the hurdles and inequities each student has to overcome to succeed in school. She has taught at Yale University, Housatonic Community College (Bridgeport, Conn.), and now at the U.

Her teaching style relies on the adoption of evidence-based teaching practices and is informed by the latest results from Physics Education Research (PER). PER is the field of physics that aims to understand and assess how students learn and make sense of physics concepts and identify successful teaching practices and instructional approaches.

In support of previous PER research, De Grandi has found that using active learning techniques and providing opportunities to promote group work are key to student success. “I started implementing group quizzes a few years ago—now I also do group exams. I prompt student reflections (on exam mistakes, performance, and preparation) and on their mindset (growth or fixed),” said De Grandi. “I do like to surprise my students by asking them to talk about something not related to physics. Learning is not just about content—I work to make sure my students are comfortable sitting in class so they can focus on learning.”

Here is what one student said about De Grandi’s teaching: “Claudia is amazing, and she’s one of the main reasons I enjoy coming to class. Her drawings are cute, and her examples are always fun and silly. She includes everyone and really knows how to make a class fun. I was worried I’d hate physics but she definitely made me love it. “

De Grandi grew up in Milan, Italy, where she received her bachelor’s and master’s degrees in physics from the University of Milan. In 2011, she obtained a Ph.D. in theoretical condensed matter physics from Boston University.

She was at Yale University first as a research postdoc and continued as a teaching postdoc through the Yale Center for Teaching and Learning. She joined the U in July 2018 as an assistant professor (lecturer) in the Department of Physics & Astronomy. De Grandi has been actively involved in faculty training on teaching for the past five years and has served as a facilitator and leader for the Summer Institutes on Scientific Teaching (https://www.summerinstitutes.org/) at several U.S. campuses as well as at University College London. She is currently collaborating with the U’s Center for Science and Mathematics Education to bring a Summer Institute to the U next spring. Interested faculty from the College of Science will be invited to participate.

At the U, De Grandi has redesigned and led the Teaching Assistant (TA) Orientation for Physics and Astronomy graduate students. The training focuses on preparing incoming graduate students to teach by promoting group work, being aware of student diversity, and fostering a welcoming environment.

“This spring I’ll be teaching a new course called “Being Human in STEM,” said De Grandi. “Although I’ve taught this course before at Yale, this will be my first time teaching it here, along with a team of colleagues in math, chemistry, and astronomy.”

The course combines academic inquiry and community engagement to investigate diversity and climate within STEM. Students will examine how diverse personal backgrounds shape the STEM experience both at the U and nationally. “The goal is to start a dialogue among STEM faculty and students to identify issues with the STEM environment and develop interventions to help ameliorate these problems,” said De Grandi. “I look forward to teaching the course, and learning, from and with the students.”

 - by Michele Swaner
  First Published in Discover Magazine, Fall 2019